1. Executor

该接口内只有一个接口方法 ;该方法的目的就是执行指定的 Runnable (但会不会执行,或者会不会立马执行,则不一定。因为要取决于整个线程池的状态)

Executor 中文的翻译就是执行者、执行器的意思

public interface Executor {

    /**
* Executes the given command at some time in the future. The command
* may execute in a new thread, in a pooled thread, or in the calling
* thread, at the discretion of the {@code Executor} implementation.
*
* @param command the runnable task
* @throws RejectedExecutionException if this task cannot be
* accepted for execution
* @throws NullPointerException if command is null
*/
void execute(Runnable command);
}

2. ExecutorService

执行器的相关服务,这里面提供了较为丰富的接口方法,以方便用户使用线程池的相服务

public interface ExecutorService extends Executor {

    /**
* Initiates an orderly shutdown in which previously submitted
* tasks are executed, but no new tasks will be accepted.
* Invocation has no additional effect if already shut down.
*
* <p>This method does not wait for previously submitted tasks to
* complete execution. Use {@link #awaitTermination awaitTermination}
* to do that.
*
* @throws SecurityException if a security manager exists and
* shutting down this ExecutorService may manipulate
* threads that the caller is not permitted to modify
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")},
* or the security manager's {@code checkAccess} method
* denies access.
*/
void shutdown(); /**
* Attempts to stop all actively executing tasks, halts the
* processing of waiting tasks, and returns a list of the tasks
* that were awaiting execution.
*
* <p>This method does not wait for actively executing tasks to
* terminate. Use {@link #awaitTermination awaitTermination} to
* do that.
*
* <p>There are no guarantees beyond best-effort attempts to stop
* processing actively executing tasks. For example, typical
* implementations will cancel via {@link Thread#interrupt}, so any
* task that fails to respond to interrupts may never terminate.
*
* @return list of tasks that never commenced execution
* @throws SecurityException if a security manager exists and
* shutting down this ExecutorService may manipulate
* threads that the caller is not permitted to modify
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")},
* or the security manager's {@code checkAccess} method
* denies access.
*/
List<Runnable> shutdownNow(); /**
* Returns {@code true} if this executor has been shut down.
*
* @return {@code true} if this executor has been shut down
*/
boolean isShutdown(); /**
* Returns {@code true} if all tasks have completed following shut down.
* Note that {@code isTerminated} is never {@code true} unless
* either {@code shutdown} or {@code shutdownNow} was called first.
*
* @return {@code true} if all tasks have completed following shut down
*/
boolean isTerminated(); /**
* Blocks until all tasks have completed execution after a shutdown
* request, or the timeout occurs, or the current thread is
* interrupted, whichever happens first.
*
* @param timeout the maximum time to wait
* @param unit the time unit of the timeout argument
* @return {@code true} if this executor terminated and
* {@code false} if the timeout elapsed before termination
* @throws InterruptedException if interrupted while waiting
*/
boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException; /**
* Submits a value-returning task for execution and returns a
* Future representing the pending results of the task. The
* Future's {@code get} method will return the task's result upon
* successful completion.
*
* <p>
* If you would like to immediately block waiting
* for a task, you can use constructions of the form
* {@code result = exec.submit(aCallable).get();}
*
* <p>Note: The {@link Executors} class includes a set of methods
* that can convert some other common closure-like objects,
* for example, {@link java.security.PrivilegedAction} to
* {@link Callable} form so they can be submitted.
*
* @param task the task to submit
* @param <T> the type of the task's result
* @return a Future representing pending completion of the task
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
* @throws NullPointerException if the task is null
*/
<T> Future<T> submit(Callable<T> task); /**
* Submits a Runnable task for execution and returns a Future
* representing that task. The Future's {@code get} method will
* return the given result upon successful completion.
*
* @param task the task to submit
* @param result the result to return
* @param <T> the type of the result
* @return a Future representing pending completion of the task
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
* @throws NullPointerException if the task is null
*/
<T> Future<T> submit(Runnable task, T result); /**
* Submits a Runnable task for execution and returns a Future
* representing that task. The Future's {@code get} method will
* return {@code null} upon <em>successful</em> completion.
*
* @param task the task to submit
* @return a Future representing pending completion of the task
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
* @throws NullPointerException if the task is null
*/
Future<?> submit(Runnable task); /**
* Executes the given tasks, returning a list of Futures holding
* their status and results when all complete.
* {@link Future#isDone} is {@code true} for each
* element of the returned list.
* Note that a <em>completed</em> task could have
* terminated either normally or by throwing an exception.
* The results of this method are undefined if the given
* collection is modified while this operation is in progress.
*
* @param tasks the collection of tasks
* @param <T> the type of the values returned from the tasks
* @return a list of Futures representing the tasks, in the same
* sequential order as produced by the iterator for the
* given task list, each of which has completed
* @throws InterruptedException if interrupted while waiting, in
* which case unfinished tasks are cancelled
* @throws NullPointerException if tasks or any of its elements are {@code null}
* @throws RejectedExecutionException if any task cannot be
* scheduled for execution
*/
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
throws InterruptedException; /**
* Executes the given tasks, returning a list of Futures holding
* their status and results
* when all complete or the timeout expires, whichever happens first.
* {@link Future#isDone} is {@code true} for each
* element of the returned list.
* Upon return, tasks that have not completed are cancelled.
* Note that a <em>completed</em> task could have
* terminated either normally or by throwing an exception.
* The results of this method are undefined if the given
* collection is modified while this operation is in progress.
*
* @param tasks the collection of tasks
* @param timeout the maximum time to wait
* @param unit the time unit of the timeout argument
* @param <T> the type of the values returned from the tasks
* @return a list of Futures representing the tasks, in the same
* sequential order as produced by the iterator for the
* given task list. If the operation did not time out,
* each task will have completed. If it did time out, some
* of these tasks will not have completed.
* @throws InterruptedException if interrupted while waiting, in
* which case unfinished tasks are cancelled
* @throws NullPointerException if tasks, any of its elements, or
* unit are {@code null}
* @throws RejectedExecutionException if any task cannot be scheduled
* for execution
*/
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
long timeout, TimeUnit unit)
throws InterruptedException; /**
* Executes the given tasks, returning the result
* of one that has completed successfully (i.e., without throwing
* an exception), if any do. Upon normal or exceptional return,
* tasks that have not completed are cancelled.
* The results of this method are undefined if the given
* collection is modified while this operation is in progress.
*
* @param tasks the collection of tasks
* @param <T> the type of the values returned from the tasks
* @return the result returned by one of the tasks
* @throws InterruptedException if interrupted while waiting
* @throws NullPointerException if tasks or any element task
* subject to execution is {@code null}
* @throws IllegalArgumentException if tasks is empty
* @throws ExecutionException if no task successfully completes
* @throws RejectedExecutionException if tasks cannot be scheduled
* for execution
*/
<T> T invokeAny(Collection<? extends Callable<T>> tasks)
throws InterruptedException, ExecutionException; /**
* Executes the given tasks, returning the result
* of one that has completed successfully (i.e., without throwing
* an exception), if any do before the given timeout elapses.
* Upon normal or exceptional return, tasks that have not
* completed are cancelled.
* The results of this method are undefined if the given
* collection is modified while this operation is in progress.
*
* @param tasks the collection of tasks
* @param timeout the maximum time to wait
* @param unit the time unit of the timeout argument
* @param <T> the type of the values returned from the tasks
* @return the result returned by one of the tasks
* @throws InterruptedException if interrupted while waiting
* @throws NullPointerException if tasks, or unit, or any element
* task subject to execution is {@code null}
* @throws TimeoutException if the given timeout elapses before
* any task successfully completes
* @throws ExecutionException if no task successfully completes
* @throws RejectedExecutionException if tasks cannot be scheduled
* for execution
*/
<T> T invokeAny(Collection<? extends Callable<T>> tasks,
long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}

这里面就提供了较为丰富的线程池方法,核心的有 shutDown() shutDownNow() submit()  注意submit 中的参数和返回值,与 execute 进行区分

3. ThreadPoolExecutor

线程池类,创建线程池时要提供一些必要的参数(共7个)

拒绝策略:当工作队列中的任务达到最大值时,该如何处理新的任务。 该类提供了4个内部类

线程工厂:线程工厂就是如何创建线程的类。Executors类内提供了两个

Executors 类是干嘛的呢? 我们应该还节的Collection 接口,有个Collections类; Array有个Arrays类

其实就是提供一些简单易用的操作方法

存活时间:其实就是一个线程不干活,即空闲的时候等待的时间,超过了该时间,空闲的线程就杀死

时间单位:存活时间的单位,是秒,还是分还是小时等

核心线程数:

最大线程数:

工作队列:

最新文章

  1. localStorage和sessionStorage
  2. Mac 配置 vim
  3. JQuery 表格 隔行换色 和鼠标滑过的样式
  4. rsyslog安装
  5. Web Builder
  6. java学习笔记----运算符
  7. XML和JSON两种数据交换格式的比较
  8. python 闭包计算移动均值及nonlocal的使用
  9. nginx 日志切割脚本
  10. mysql中计算日期整数差
  11. vue2.0项目实战(5)vuex快速入门
  12. dubbo源码分析14——DubboProtocol的export方法分析
  13. Nginx配置项优
  14. Cocos Creator 脚本模板
  15. Java中for循环中的的try-catch
  16. Vmaware复制后的虚拟机不能上网问题解决
  17. Hystrix-超时设置
  18. Region特征算子与形态学运算——第3讲
  19. [LeetCode 题解]: Binary Tree Preorder Traversal
  20. python 封装时间常用操作方法-time,datetime

热门文章

  1. 《Object Storage on CRAQ: High-throughput chain replication for read-mostly workloads》论文总结
  2. Pop!_OS配置JAVA环境
  3. Celery无法注册任务的几种情况
  4. java 数据结构(五):数据结构简述
  5. Python+selenium+unittest+HTMLTestReportCN单元测试框架分享
  6. web测试中不容忽视的细节
  7. P1866 编号
  8. 深度学习趣谈:什么是迁移学习?(附带Tensorflow代码实现)
  9. NVIDIA GPU Volta架构简述
  10. ES6面试