Portal

Yet another 1e9+7

Yet another 计数 dp

Yet another 我做不出来的题

考虑合法的按键方式长啥样。假设我们依次按下了 \(p_1,p_2,\dots,p_m\) 号按键。

若 \(m=1\),则序列 \(p_1,p_2,\dots,p_m\) 显然合法。

若 \(m>1\),则 \(p_1,p_2,\dots,p_m\) 必须有唯一最大值 \(x\)(否则的话第二次按 \(x\) 的时候就不合法了)。假设 \(x\) 将原序列分成两个子序列 \(p_1,p_2,\dots,p_{k-1}\) 和 \(p_{k+1},p_{k+2},\dots,p_{m}\),那么这两个序列的最大值必须都小于 \(x\),否则原序列就不会有唯一最大值 \(x\) 了。并且 \(p_1,p_2,\dots,p_{k-1}\) 和 \(p_{k+1},p_{k+2},\dots,p_{m}\) 也必须是合法序列。

形式化地说,\(p_1,p_2,\dots,p_m\) 必须是一个大根堆的中序遍历。

这样就可以 \(dp\) 了。设 \(dp_{a,b,c,x1,x2}\) 表示起点为 \(a\),终点为 \(b\),按下的按键的编号都 \(\leq c\) 的合法的行走路线个数。\(x1\) 表示是否对第一次的按键有要求,\(x2\) 表示是否对最后一次的按键有要求。

先考虑 \(x1=x2=0\) 的情况,即对起点和终点按键都没有要求。

那么有以下两种转移方式:

  • 按键序列中按下的编号最大的按键 \(<c\),则 \(dp_{a,b,c,0,0}=dp_{a,b,c-1,0,0}\)
  • 若按键序列中按下的编号最大的按键 \(=c\),那么我们枚举在 \(k\) 点按下编号为 \(c\) 的键,那么 \(a\) 到 \(b\) 的路径被我们拆成了两部分 \(a\to k\) 和 \(k\to b\)。我们进一步枚举 \(k\) 之前到达的点 \(u\) 和 \(k\) 接下来到达的点 \(v\),那么根据之前的推论,\(a\to u\) 路径上我们只能按下编号 \(\leq c-1\) 的键,\(v\to b\) 的路径上我们也只能按下编号 \(\leq c-1\) 的键。故我们有 \(dp_{a,b,c,0,0}=\sum\limits_{k}\sum\limits_{(u,k)}\sum\limits_{(k,v)}dp_{a,u,c-1,0,0}\times dp_{v,b,c-1,0,0}\),记 \(f_{a,k,c}=\sum\limits_{(u,k)}dp_{a,u,c-1,0,0}\), \(g_{b,k,c}=\sum\limits_{(k,v)}dp_{v,b,c-1,0,0}\),那么上述式子可优化为 \(dp_{a,b,c,0,0}=\sum\limits_{k}f_{a,k,c}\times g_{b,k,c}\)(当然,如果 \(k=a\) 那么 \(k\) 可以是路径当中第一个点,此时就不存在 \(k\) 之前的点了,故令所有 \(f_{a,a,c}\) 加 \(1\) 即可,\(g_{b,b,c}\) 同理)。

紧接着是 \(x1\neq 0\) 或 \(x2\neq 0\) 的情况,这里以 \(x1=1,x2=0\) 的情况为例,其它两种情况同理。

还是分两种情况(其实与之前那种情况大差不差):

  • 按键序列中按下的编号最大的按键 \(<c\),则 \(dp_{a,b,c,1,0}=dp_{a,b,c-1,1,0}\)。
  • 若按键序列中按下的编号最大的按键 \(=c\), \(dp_{a,b,c,1,0}=\sum\limits_{k}\sum\limits_{(u,k)}\sum\limits_{(k,v)}dp_{a,u,c-1,1,0}\times dp_{v,b,c-1,0,0}\),你还是记 \(f_{a,k,c}=\sum\limits_{(u,k)}dp_{a,u,c-1,1,0}\), \(g_{b,k,c}=\sum\limits_{(k,v)}dp_{v,b,c-1,0,0}\),将上述式子优化为 \(dp_{a,b,c,1,0}=\sum\limits_{k}f_{a,k,c}\times g_{b,k,c}\)(只不过 \(k=a\) 的情况要改一下,只有当 \(c=bs\) 的时候才能令 \(f_{a,a,c}\) 加 \(1\))

这样 \(dp\) 一遍是 \(n^4\) 的,加上 \(q\) 次询问的条件,显然不能让我们满意。

不过发现对于每组询问,只有当 \(a=s\) 的时候 \(dp_{a,b,c,1,0}\) 才有意义,只有当 \(b=t\) 的时候 \(dp_{a,b,c,0,1}\) 才有意义。所以可以预处理出 \(dp_{a,b,c,0,0}\) 的值,对于每组询问重新计算 \(dp_{a,b,c,0,1},dp_{a,b,c,1,0},dp_{a,b,c,1,1}\) 的值。这样总复杂度就降到了 \(n^4+qn^3\)。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define ffe(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=1;
while(!isdigit(c)){if(c=='-') neg=-1;c=getchar();}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
x*=neg;
}
const int MAXN=60;
const int MOD=1e9+7;
int n,k,qu;
char ed[MAXN+5][MAXN+5];
int dp[2][2][MAXN+5][MAXN+5][MAXN+5],f[2][MAXN+5][MAXN+5][MAXN+5],g[2][MAXN+5][MAXN+5][MAXN+5];
void prework(){
for(int x=1;x<=k;x++){
for(int i=1;i<=n;i++) for(int k=1;k<=n;k++) for(int l=1;l<=n;l++)
if(ed[l][k]=='1') f[0][i][k][x]=(f[0][i][k][x]+dp[0][0][i][l][x-1])%MOD;
for(int j=1;j<=n;j++) for(int k=1;k<=n;k++) for(int l=1;l<=n;l++)
if(ed[k][l]=='1') g[0][j][k][x]=(g[0][j][k][x]+dp[0][0][l][j][x-1])%MOD;
for(int i=1;i<=n;i++) f[0][i][i][x]=(f[0][i][i][x]+1)%MOD;
for(int i=1;i<=n;i++) g[0][i][i][x]=(g[0][i][i][x]+1)%MOD;
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) dp[0][0][i][j][x]=dp[0][0][i][j][x-1];
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) for(int k=1;k<=n;k++)
dp[0][0][i][j][x]=(dp[0][0][i][j][x]+1ll*f[0][i][k][x]*g[0][j][k][x]%MOD)%MOD;
}
}
int query(int s,int bs,int t,int bt){
fill0(dp[1][0]);fill0(dp[0][1]);fill0(dp[1][1]);fill0(f[1]);fill0(g[1]);
for(int x=1;x<=k;x++){
for(int k=1;k<=n;k++) for(int l=1;l<=n;l++)
if(ed[l][k]=='1') f[1][s][k][x]=(f[1][s][k][x]+dp[1][0][s][l][x-1])%MOD;
for(int k=1;k<=n;k++) for(int l=1;l<=n;l++)
if(ed[k][l]=='1') g[1][t][k][x]=(g[1][t][k][x]+dp[0][1][l][t][x-1])%MOD;
if(x==bs) f[1][s][s][x]=(f[1][s][s][x]+1)%MOD;
if(x==bt) g[1][t][t][x]=(g[1][t][t][x]+1)%MOD;
for(int i=1;i<=n;i++){
dp[1][0][s][i][x]=dp[1][0][s][i][x-1];
dp[0][1][i][t][x]=dp[0][1][i][t][x-1];
for(int k=1;k<=n;k++){
dp[1][0][s][i][x]=(dp[1][0][s][i][x]+1ll*f[1][s][k][x]*g[0][i][k][x]%MOD)%MOD;
dp[0][1][i][t][x]=(dp[0][1][i][t][x]+1ll*f[0][i][k][x]*g[1][t][k][x]%MOD)%MOD;
}
}
dp[1][1][s][t][x]=dp[1][1][s][t][x-1];
for(int k=1;k<=n;k++){
dp[1][1][s][t][x]=(dp[1][1][s][t][x]+1ll*f[1][s][k][x]*g[1][t][k][x]%MOD)%MOD;
}
}
return dp[1][1][s][t][k];
}
int main(){
scanf("%d%d%d",&n,&k,&qu);
for(int i=1;i<=n;i++) scanf("%s",ed[i]+1);
prework();
while(qu--){
int s,bs,t,bt;scanf("%d%d%d%d",&bs,&s,&bt,&t);
printf("%d\n",query(s,bs,t,bt));
}
return 0;
}
/*
6 3 8
010000
001000
000100
000010
000000
000001
1 1 1 1
3 3 1 1
1 1 3 3
1 1 1 5
2 1 1 5
1 1 2 5
3 1 3 5
2 6 2 6
*/

最新文章

  1. 游戏启示录 关于Update的相关问题
  2. Python中的网络编程
  3. js严格模式总结
  4. 《zw版&#183;Halcon-delphi系列原创教程》 Halcon分类函数014,tuple,元组
  5. 错误详情:CL : fatal error C1033: cannot open program database &#39;&#39;
  6. IEnumerable和IQueryable的区别
  7. keystone系列二:keystone源码分析
  8. TatukGIS-TGIS_Editor.CreateShape
  9. Java设计模式菜鸟系列(十四)代理模式建模与实现
  10. ORACLE-EXP和IMP方法介绍
  11. 一种laravel特有的serviceProvider的加载方式
  12. [USACO12JAN]爬山Mountain Climbing
  13. 并发编程(一): POSIX 使用互斥量和条件变量实现生产者/消费者问题
  14. 机器学习之决策树三-CART原理与代码实现
  15. Python——plot可视化数据,作业8(python programming)
  16. [js]javascript索引
  17. sersync客户端搭建及配置
  18. chmod命令-权限
  19. mysql修改数据路径
  20. 记开发个人图书收藏清单小程序开发(三)DB设计

热门文章

  1. 【UE4 C++ 基础知识】&lt;2&gt; UFUNCTION宏、函数说明符、元数据说明符
  2. 【UE4 C++】调用外部链接库 lib静态库
  3. pycharm 服务器连接及一些问题解决
  4. BUAA软件工程个人项目作业
  5. spring、spring boot中配置多数据源
  6. 2021.9.26考试总结[NOIP模拟62]
  7. OTA测试介绍
  8. 洛谷 P2120 [ZJOI2007] 仓库建设
  9. Swift-方法调度-类的普通方法底层探究
  10. Ubuntu用apt安装MySQL