引言

  Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。使用Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。也可以使用 Stream API 来并行执行操作。简而言之,Stream API 提供了一种高效且易于使用的处理数据的方式。

转自:https://blog.csdn.net/y_k_y/article/details/84633001

特点:

1 . 不是数据结构,不会保存数据。

2. 不会修改原来的数据源,它会将操作后的数据保存到另外一个对象中。(保留意见:毕竟peek方法可以修改流中元素)

3. 惰性求值,流在中间处理过程中,只是对操作进行了记录,并不会立即执行,需要等到执行终止操作的时候才会进行实际的计算。

创建流

// 获取顺序流
Stream stream = new ArrayList().stream();
// 获取并行流
Stream parallelStream = new ArrayList().parallelStream();
// 数组转成流
Integer[] nums = {1,2,3};
Stream<Integer> streamArray = Arrays.stream(nums);

赋值

// of方法直接赋值
Stream<Integer> stream1 = Stream.of(1,2,3,4,5);
stream1.forEach(System.out::println); // 1 2 3 4 5

// iterate生成生成无限顺序有序流,主要作用是抽象迭代逻辑
Stream<Integer> stream2 = Stream.iterate(2, x -> x * 2).limit(5);
stream2.forEach(System.out::println); // 2 4 8 16 32

// generate生成无限顺序无序流,其中每个元素由提供的供应商生成。这适用于生成恒定流,随机元素流等。
Stream<Integer> stream3 = Stream.generate(new Random()::nextInt).limit(2);
stream3.forEach(System.out::println); //15356208 -2042159

筛选与切片

filter:过滤流中的某些元素 limit(n):获取n个元素 skip(n):跳过n元素 distinct:通过流中元素的 hashCode() 和 equals() 去除重复元素

Integer[] nums = {1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10};
Stream<Integer> streamArray = Arrays.stream(nums);
Stream<Integer> result = streamArray
.distinct() // 去重 1 2 3 4 5 6 7 8 9 10
.filter(i -> (i > 2)) // 筛选出值>2的元素 3 4 5 6 7 8 9 10
.skip(2) // 跳过前2个元素 5 6 7 8 9 10
.limit(4); // 获取前4个元素 5 6 7 8

映射

map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素

Integer[] nums = {1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10};
Stream<Integer> streamArray = Arrays.stream(nums);
List<String> strings = streamArray
.map(String::valueOf) // 通过String.valueOf()方法将各个元素转为字符串
.collect(Collectors.toList()); // 将流转为List集合

flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流

Stream<String> streamArray2 = Stream.of("1.2.3", "4.5.6", "7.8.9");
List<String> result = streamArray2
.flatMap(s -> Arrays.stream(s.split("\\."))) //将流中的每个值都换成另一个流,然后分割
.collect(Collectors.toList());
// 1 2 3 4 5 6 7 8 9

排序

sorted():自然排序,流中元素需实现Comparable接口

List<String> list = Arrays.asList("a", "d", "c", "b", "x");
List<String> result = list.stream()
.sorted()
.collect(Collectors.toList());
// a b c d x

sorted(Comparator com):定制排序,自定义Comparator排序器

Person s1 = new Person("aa", 10);
Person s2 = new Person("bb", 20);
Person s3 = new Person("aa", 30);
Person s4 = new Person("dd", 40);
List<Person> personList = Arrays.asList(s1, s2, s3, s4);
//自定义排序:先按姓名升序,姓名相同则按年龄升序
personList.stream().sorted(
      (o1, o2) -> {
           if (o1.getName().equals(o2.getName())) {
               return o1.getAge() - o2.getAge();
          } else {
               return o1.getName().compareTo(o2.getName());
          }
      }
).forEach(person -> System.out.println(person.getName()));

消费

peek:如同于map,能得到流中的每一个元素。但map接收的是一个Function表达式,有返回值;而peek接收的是Consumer表达式,没有返回值

Person s1 = new Person("aa", 10);
Person s2 = new Person("bb", 20);
Person s3 = new Person("aa", 30);
Person s4 = new Person("dd", 40);
List<Person> personList = Arrays.asList(s1, s2, s3, s4);

personList.stream()
.peek(person -> person.setAge(100))
.forEach(person -> System.out.println(person.getName()+":"+person.getAge()));

匹配

allMatch:接收一个 Predicate 函数,当流中每个元素都符合该断言时才返回true,否则返回false

List<Integer> integers = Arrays.asList(1, 2, 3, 4, 5);
// 里面的元素是否都满足>10这个条件
boolean result = integers.stream().allMatch(i -> i > 10); // false

noneMatch:接收一个 Predicate 函数,当流中每个元素都不符合该断言时才返回true,否则返回false

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);
// 里面的元素是否都 不 满足>10这个条件
boolean result = list.stream().noneMatch(i -> i > 10); // true

anyMatch:接收一个 Predicate 函数,只要流中存在元素满足该断言则返回true,否则返回false

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 11);
// 里面的元素是否存在满足>10这个条件
boolean result = list.stream().anyMatch(i -> i > 10); // true

findFirst:返回流中第一个元素

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 11);
// Optional对象常用于解决空指针问题
Optional<Integer> optional = list.stream().findFirst();
System.out.println(optional.get()); // 1

count:返回流中元素的总个数

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 11);
Long result = list.stream().count();
System.out.println(result); // 6

max:返回流中元素最大值

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 11);
Integer max = list.stream().max(Integer::compareTo).get(); // 11

min:返回流中元素最小值

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 11);
Integer min = list.stream().min(Integer::compareTo).get(); // 1

reduce

Optional<T> reduce(BinaryOperator<T> accumulator)

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6);
Optional<Integer> optional = list.stream().reduce((x1, x2) -> x1 + x2);
System.out.println(optional.get()); // 21(为流中元素的和)
// 等效于
// Optional<Integer> optional = list.stream().reduce(Integer::sum);

T reduce(T identity, BinaryOperator<T> accumulator)

identity:返回实例 accumulator:累加器

String[] strings = {"a", "b", "c", "d", "e"};
String reduce2 = Arrays.stream(strings).reduce("", (a, b) -> {
if (!"".equals(a)) {
return a + "|" + b;
} else {
return b;
}
});
/**
* 执行流程:
* 第一个元素identity的值为"",因此a的初始值为"",b的初始值为流中第一个元素"a"
* 第一次执行之后得到结果"a",然后执行结果的值赋给a,流中第二个元素的值"b"赋给b
* 第二次执行之后得到结果"a|b",然后以此类推
*/
System.out.println(reduce2); // a|b|c|d|e

reduce(U identity,BiFunction<U, ? super T, U> accumulator,BinaryOperator<U> combiner)

identity:返回实例 accumulator:累加器 combiner:组合器

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24);
Integer v2 = list.stream().reduce(0,
(x1, x2) -> {
System.out.println("stream accumulator: x1:" + x1 + " x2:" + x2);
return x1 - x2;
},
// 第三个参数---参数的数据类型必须为返回数据类型,改参数主要用于合并多个线程的result值
//(Stream是支持并发操作的,为了避免竞争,对于reduce线程都会有独立的result)
(x1, x2) -> {
System.out.println("stream combiner: x1:" + x1 + " x2:" + x2);
return x1 * x2;
});
System.out.println(v2); // -300

最新文章

  1. Newtonsoft.json中 linq to json 和序列化哪个快?
  2. jQuery 3.0 的 Data 浅析
  3. movebase导航
  4. [LeetCode] Ugly Number (A New Question Added Today)
  5. Android开发手记(32) 使用摄像头拍照
  6. POJ 2914 Minimum Cut Stoer Wagner 算法 无向图最小割
  7. sourcestress 问题解决方案
  8. 圆形进度条css3样式
  9. PHP菜鸟如何开始学习PHP语言
  10. Java中数组定义的三种方式
  11. python 面向对象编程(初级篇)
  12. 《机器学习实战》之k-近邻算法(手写识别系统)
  13. Package CJK Error: Invalid character code. 问题解决方法--xelatex和pdflatex编译的转换
  14. (3.3)mysql基础深入——mysql启动深入分析
  15. 时间序列深度学习:状态 LSTM 模型预測太阳黑子(一)
  16. vs2008 FileUpload 上传控件 Gridview传多个值
  17. 四种常见的 POST 提交数据方式 专题
  18. (Les17 移动数据)expdp/impdp
  19. mac环境搭建selenium
  20. Flutter Navigator operation requested with a context that does not include a Navigat

热门文章

  1. 线程池系列二:一张动图,彻底懂了execute和submit
  2. 另类加法 牛客网 程序员面试经典 C++ Python
  3. mysql登录后重置root密码的步骤
  4. 单自由度系统中质量、阻尼和刚度变化对频率响应函数(FRF)影响图的绘制
  5. 【java+selenium3】线程休眠方法 (六)
  6. robotframework定位页面内Frame框架里的元素
  7. Python Excel工具类封装, 给excel表头搞点颜色
  8. JDK 之 HttpClient(jdk11)
  9. 监控框架 - prometheus
  10. 站长管理服务器必读:Ftp、Ftps与Sftp三兄弟的不同与区别以及部署全指引