基本要素

  • 状态 \(N\)个

  • 状态序列 \(S = s_1,s_2,...\)

  • 观测序列 \(O=O_1,O_2,...\)

  • \(\lambda(A,B,\pi)\)

    • 状态转移概率 \(A = \{a_{ij}\}\)
    • 发射概率 \(B = \{b_{ik}\}\)
    • 初始概率分布 \(\pi = \{\pi_i\}\)
  • 观测序列生成过程

    • 初始状态
    • 选择观测
    • 状态转移
    • 返回step2

HMM三大问题

  • 概率计算问题(评估问题)

给定观测序列 \(O=O_1O_2...O_T\),模型 \(\lambda (A,B,\pi)\),计算 \(P(O|\lambda)\),即计算观测序列的概率

  • 解码问题

给定观测序列 \(O=O_1O_2...O_T\),模型 \(\lambda (A,B,\pi)\),找到对应的状态序列 \(S\)

  • 学习问题

给定观测序列 \(O=O_1O_2...O_T\),找到模型参数 \(\lambda (A,B,\pi)\),以最大化 \(P(O|\lambda)\),

概率计算问题

给定模型 \(\lambda\) 和观测序列 \(O\),如何计算\(P(O| \lambda)\)?

暴力枚举每一个可能的状态序列 \(S\)

  • 对每一个给定的状态序列

    \[P(O|S,\lambda) = \prod^T_{t=1} P(O_t|s_t,\lambda) =\prod^T_{t=1} b_{s_tO_t}
    \]

  • 一个状态序列的产生概率

    \[P(S|\lambda) = P(s_1)\prod^T_{t=2}P(s_t|s_{t-1})=\pi_1\prod^T_{t=2}a_{s_{t-1}s_t}
    \]

  • 联合概率

    \[P(O,S|\lambda) = P(S|\lambda)P(O|S,\lambda) =\pi_1\prod^T_{t=2}a_{s_{t-1}s_t}\prod^T_{t=1} b_{s_tO_t}
    \]

  • 考虑所有的状态序列

    \[P(O|\lambda)=\sum_S\pi_1b_{s_1O_1}\prod^T_{t=2}a_{s_{t-1}s_t}b_{s_tO_t}
    \]

\(O\) 可能由任意一个状态得到,所以需要将每个状态的可能性相加。

这样做什么问题?时间复杂度高达 \(O(2TN^T)\)。每个序列需要计算 \(2T\) 次,一共 \(N^T\) 个序列。

前向算法

在时刻 \(t\),状态为 \(i\) 时,前面的时刻观测到 \(O_1,O_2, ..., O_t\) 的概率,记为 \(\alpha _i(t)\) :

\[\alpha_{i}(t)=P\left(O_{1}, O_{2}, \ldots O_{t}, s_{t}=i | \lambda\right)
\]

当 \(t=1\) 时,输出为 \(O_1\),假设有三个状态,\(O_1\) 可能是任意一个状态发出,即

\[P(O_1|\lambda) = \pi_1b_1(O_1)+\pi_2b_2(O_1)+\pi_2b_3(O_1) = \alpha_1(1)+\alpha_2(1)+\alpha_3(1)
\]

当 \(t=2\) 时,输出为 \(O_1O_2\) ,\(O_2\) 可能由任一个状态发出,同时产生 \(O_2\) 对应的状态可以由 \(t=1\) 时刻任意一个状态转移得到。假设 \(O_2\) 由状态 1 发出,如下图

\[P(O_1O_2,s_2=q_1|\lambda) = \pi_1b_1(O_1)a_{11}b_1(O_2)+\pi_2b_2(O_1)a_{21}b_1(O_2)+\pi_2b_3(O_1)a_{31}b_1(O_2) \\
=\bold{\alpha_1(1)}a_{11}b_1(O_2)+\bold{\alpha_2(1)}a_{21}b_1(O_2)+\bold{\alpha_3(1)}a_{31}b_1(O_2) = \bold{\alpha_1(2)}
\]

同理可得 \(\alpha_2(2),\alpha_3(2)\)

\[\bold{\alpha_2(2)} = P(O_1O_2,s_2=q_2|\lambda)
=\bold{\alpha_1(1)}a_{12}b_2(O_2)+\bold{\alpha_2(1)}a_{22}b_2(O_2)+\bold{\alpha_3(1)}a_{32}b_2(O_2)
\\
\bold{\alpha_3(2)} = P(O_1O_2,s_2=q_3|\lambda)
=\bold{\alpha_1(1)}a_{13}b_3(O_2)+\bold{\alpha_2(1)}a_{23}b_3(O_2)+\bold{\alpha_3(1)}a_{33}b_3(O_2)
\]

所以

\[P(O_1O_2|\lambda) =P(O_1O_2,s_2=q_1|\lambda)+ P(O_1O_2,s_2=q_2|\lambda) +P(O_1O_2,s_2=q_3|\lambda)\\
= \alpha_1(2)+\alpha_2(2)+\alpha_3(2)
\]

所以前向算法过程如下:

​ step1:初始化 \(\alpha_i(1)= \pi_i*b_i(O_1)\)

​ step2:计算 \(\alpha_i(t) = (\sum^{N}_{j=1} \alpha_j(t-1)a_{ji})b_i(O_{t})\)

​ step3:\(P(O|\lambda) = \sum^N_{i=1}\alpha_i(T)\)

相比暴力法,时间复杂度降低了吗?

当前时刻有 \(N\) 个状态,每个状态可能由前一时刻 \(N\) 个状态中的任意一个转移得到,所以单个时刻的时间复杂度为 \(O(N^2)\),总时间复杂度为 \(O(TN^2)\)

代码实现

例子:

假设从三个 袋子 {1,2,3}中 取出 4 个球 O={red,white,red,white},模型参数\(\lambda = (A,B,\pi)\) 如下,计算序列O出现的概率

#状态 1 2 3
A = [[0.5,0.2,0.3],
	 [0.3,0.5,0.2],
	 [0.2,0.3,0.5]]

pi = [0.2,0.4,0.4]

# red white
B = [[0.5,0.5],
	 [0.4,0.6],
	 [0.7,0.3]]

​ step1:初始化 \(\alpha_i(1)= \pi_i*b_i(O_1)\)

​ step2:计算 \(\alpha_i(t) = (\sum^{N}_{j=1} \alpha_j(t-1)a_{ji})b_i(O_{t})\)

​ step3:\(P(O|\lambda) = \sum^N_{i=1}\alpha_i( T)\)

#前向算法
def hmm_forward(A,B,pi,O):
    T = len(O)
    N = len(A[0])
    #step1 初始化
    alpha = [[0]*T for _ in range(N)]
    for i in range(N):
        alpha[i][0] = pi[i]*B[i][O[0]]

    #step2 计算alpha(t)
    for t in range(1,T):
        for i in range(N):
            temp = 0
            for j in range(N):
                temp += alpha[j][t-1]*A[j][i]
            alpha[i][t] = temp*B[i][O[t]]

    #step3
    proba = 0
    for i in range(N):
        proba += alpha[i][-1]
    return proba,alpha

A = [[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]
B = [[0.5,0.5],[0.4,0.6],[0.7,0.3]]
pi = [0.2,0.4,0.4]
O = [0,1,0,1]
hmm_forward(A,B,pi,O)  #结果为 0.06009

结果

后向算法

在时刻 \(t\),状态为 \(i\) 时,观测到 \(O_{t+1},O_{t+2}, ..., O_T\) 的概率,记为 \(\beta _i(t)\) :

\[\beta_{i}(t)=P\left(O_{t+1},O_{t+2}, ..., O_T | s_{t}=i, \lambda\right)
\]

当 \(t=T\) 时,由于 \(T\) 时刻之后为空,没有观测,所以 \(\beta_i(t)=1\)

当 \(t = T-1\) 时,观测 \(O_T\) ,\(O_T\) 可能由任意一个状态产生

\[\beta_i(T-1) = P(O_T|s_{t}=i,\lambda) = a_{i1}b_1(O_T)\beta_1(T)+a_{i2}b_2(O_T)\beta_2(T)+a_{i3}b_3(O_T)\beta_3(T)
\]

当 \(t=1\) 时,观测为 \(O_{2},O_{3}, ..., O_T\)

\[\begin{aligned}
\beta_1(1)
&= P(O_{2},O_{3}, ..., O_T|s_1=1,\lambda)\\
&=a_{11}b_1(O_2)\beta_1(2)+a_{12}b_2(O_2)\beta_2(2)+a_{13}b_3(O_2)\beta_3(2)
\\
\quad
\\
\beta_2(1)
&= P(O_{2},O_{3}, ..., O_T|s_1=2,\lambda)\\
&=a_{21}b_1(O_2)\beta_1(2)+a_{22}b_2(O_2)\beta_2(2)+a_{23}b_3(O_2)\beta_3(2)
\\
\quad
\\
\beta_3(1)
&=P(O_{2},O_{3}, ..., O_T|s_1=3,\lambda)\\
&=a_{31}b_1(O_2)\beta_1(2)+a_{32}b_2(O_2)\beta_2(2)+a_{33}b_3(O_2)\beta_3(2)
\end{aligned}
\]

所以

\[P(O_{2},O_{3}, ..., O_T|\lambda) = \beta_1(1)+\beta_2(1)+\beta_3(1)
\]

后向算法过程如下:

​ step1:初始化 \(\beta_i(T)=1\)

​ step2:计算 \(\beta_i(t) = \sum^N_{j=1}a_{ij}b_j(O_{t+1})\beta_j(t+1)\)

​ step3:\(P(O|\lambda) = \sum^N_{i=1}\pi_ib_i(O_1)\beta_i(1)\)

  • 时间复杂度 \(O(N^2T)\)

代码实现

还是上面的例子

#后向算法
def hmm_backward(A,B,pi,O):
    T = len(O)
    N = len(A[0])
    #step1 初始化
    beta = [[0]*T for _ in range(N)]
    for i in range(N):
        beta[i][-1] = 1

    #step2 计算beta(t)
    for t in reversed(range(T-1)):
        for i in range(N):
            for j in range(N):
                beta[i][t]  += A[i][j]*B[j][O[t+1]]*beta[j][t+1]

    #step3
    proba = 0
    for i in range(N):
        proba += pi[i]*B[i][O[0]]*beta[i][0]
    return proba,beta

A = [[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]
B = [[0.5,0.5],[0.4,0.6],[0.7,0.3]]
pi = [0.2,0.4,0.4]
O = [0,1,0,1]
hmm_backward(A,B,pi,O)  #结果为 0.06009

结果

前向-后向算法

回顾前向、后向变量:

  • \(a_i(t)\) 时刻 \(t\),状态为 \(i\) ,观测序列为 \(O_1,O_2, ..., O_t\) 的概率
  • \(\beta_i(t)\) 时刻 \(t\),状态为 \(i\) ,观测序列为 \(O_{t+1},O_{t+2}, ..., O_T\) 的概率

\[\begin{aligned}
P(O,s_t=i|\lambda)
&= P(O_1,O_2, ..., O_T,s_t=i|\lambda)\\
&= P(O_1,O_2, ..., O_t,s_t=i,O_{t+1},O_{t+2}, ..., O_T|\lambda)\\
&= P(O_1,O_2, ..., O_t,s_t=i|\lambda)*P(O_{t+1},O_{t+2}, ..., O_T|O_1,O_2, ..., O_t,s_t=i,\lambda) \\
&= P(O_1,O_2, ..., O_t,s_t=i|\lambda)*P(O_{t+1},O_{t+2}, ..., O_T,s_t=i|\lambda)\\
&= a_i(t)*\beta_i(t)
\end{aligned}
\]

即在给定的状态序列中,\(t\) 时刻状态为 \(i\) 的概率。

使用前后向算法可以计算隐状态,记 \(\gamma_i(t) = P(s_t=i|O,\lambda)\) 表示时刻 \(t\) 位于隐状态 \(i\) 的概率

\[P\left(s_{t}=i, O | \lambda\right)=\alpha_{i}(t) \beta_{i}(t)
\]

\[\begin{aligned}
\gamma_{i}(t)
&=P\left(s_{t}={i} | O, \lambda\right)=\frac{P\left(s_{t}={i}, O | \lambda\right)}{P(O | \lambda)} \\
&=\frac{\alpha_{i}(t) \beta_{i}(t)}{P(O | \lambda)}=\frac{\alpha_{i}(t) \beta_{i}(t)}{\sum_{i=1}^{N} \alpha_{i}(t) \beta_{i}(t)}
\end{aligned}
\]

references:

[1] https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

[2]https://www.cnblogs.com/fulcra/p/11065474.html

[3] https://www.cnblogs.com/sjjsxl/p/6285629.html

[4] https://blog.csdn.net/xueyingxue001/article/details/52396494

最新文章

  1. 【跟着子迟品 underscore】常用类型判断以及一些有用的工具方法
  2. 转:python list排序的两种方法及实例讲解
  3. 用Phaser实现Flappy Bird 游戏
  4. 基于Bootstrap的DropDownList的JQuery组件的完善版
  5. java AES加密算法
  6. lastcomm搜索并显示以前执行过的命令信息
  7. soket.io.js + angular.js + express.js(node.js)
  8. Mysql的热备份[转载]
  9. win10 uwp 绑定静态属性
  10. 利用Effmpeg 提取视频中的音频(mp3)
  11. jenkin插件整理
  12. 7.2.5 多层嵌套的if语句
  13. 贪心-Wooden Sticks
  14. 各个系统下ping IP+端口的方法
  15. ARC101E - Ribbons on Tree
  16. node.js入门学习笔记整理
  17. 一步步教你上架iOS APP
  18. C#正则验证字符串是否全是数字
  19. Spring/Spring MVC/Spring Boot的区别
  20. 如何打一手好Log

热门文章

  1. E - Dungeon Master BFS
  2. 【山外笔记-SVN命令】svnlook命令详解
  3. python3爬虫 爬取动漫视频
  4. phpMyAdmin后台文件包含溯源
  5. TensorFlow keras 迁移学习
  6. Java 动态编译--DynamicCompiler
  7. 头文件<cmath>中常用函数
  8. DZ的CURD
  9. Spring5参考指南:组件扫描
  10. 微软宣布一批新获得Microsoft Teams认证的会议硬件