php中文网数学符号的显示太差了,推荐看这里

贝塞尔曲线简介:
贝塞尔曲线,是贝塞尔老爷子在使用电子计算机设计汽车零件的时候 进行曲面设计而采用的一种参数化的样条曲线.

一般参数方程:

B(t) = \sum_{i=0}^nC_n^iP_i(1-t)^{n-i}t^i

由公式很容易可以看出n阶贝塞尔曲线需要的点数是n+1个点,该公式为参数方程,并不是一般意义上的y=f(x),而是y = f(t),x = f(t).

贝塞尔曲线就是用来画曲线的,以三阶贝塞尔曲线为例,他有四个控制点,第一个点和最后一个点是这条曲线的起始点和终止点,曲线必定会经过这两个点,而第二个和第三个则是控制曲线形状的,更直接来说通过改变第二个点和第三个 点的位置,曲线的斜率就会受到影响。具体的影响可以直接打开chrome调试面板任意设置一个transition属性 然后观察其timing-function 看到效果。

上边说到了斜率,那其实在一个位移-时间的曲线方程中,斜率则代表了速度,实际在web动画中位移可以换成任何一个属性(详见早年间关于动画的一些论断)

那其实用js实现一条三阶贝塞尔曲线,无外呼是找一个 时间x -> 其他任意属性y 之间的映射。

这里,x我们是已知的,现在的需求就是解出y,以CSS的transition-timing-function做为一个参考,我们可以把起始点和终止点的坐标设置成(0,0)和(1,1) (实际很多东西都会这么处理,最后的结果做一个线性映射就好),自然两个控制点的范围也应该在0-1之间。

先将贝塞尔曲线展开成一般形式:

B(t) = P_0(1-t)^3 + 3P_1t(1-t)^2 + 3P2t^2(1-t) + P3t^3

起始、终止点带入简化:

B(t) = 3P_1t(1-t)^2 + 3P_2t^2(1-t) + t^3

OK,理论完成可以实践了。

假定,我们得到某一时刻的时刻值 x , 那么通过参数方程B(t) = x , 可求得参数t的值,再将该t带入 y = B (t),中即可求得我们想要的最终结果y。

所以,归根结底,第一件事情是要解方程,多次函数的求根并不容易,这里具体实现的时候,我们可以参考chromium的贝塞尔曲线实现,来解决这个问题,具体的做法是,首先通过8次牛顿迭代,如果找到了就直接return结果,如果没有,就开始Bisection_method(应该叫对分法)

牛顿迭代的原理,简而言之就是在一条曲线上任选一点做切线,然后在该切线与x轴的交点上做一条垂直于x轴的直线,假设该直线与曲线相交于另一个点,再在该点做切线。。。 一直重复此过程,切线于x轴的交点会越来越与曲线的根接近。

基本推导:
假设有曲线y = f(x) 该曲线上任取一点x_0,y_0,做该点切线,
则,该点处切线的斜率为f^{(1)}(x_0);
由曲线方程 y = kx + b 代入以上参数得
b = f(x_0) - f^{(1)}(x_0)x_0
故 切线方程为 g(x) = f(x_0) - f^{(1)}(x_0)(x_0-x);
得到该切线与x轴得交点为x_1 = x_0 - \frac{f(x_0)}{f^{(1)}(x_0)}
这便是一次迭代。x1便是我们得到第一个近似根,在往后得迭代中,假如这个近似跟与实际根的误差在一个我们可接受的范围内,便可以将这个根当作真根。

Bisection_method的基本推导则是假如连续函数y = f(x) 在区间[a,b]上连续,且f(a)与f(b)符号相反,那么函数y在区间[a,b]上至少有一个根。然后二分这个区间进行求值。

代码:

  1. type coordinate = {
  2. x: number,
  3. y: number
  4. }
  5. export class cubicBezier{
  6. p1: coordinate
  7. p2: coordinate
  8. precision = 1e-5;
  9. constructor(x1,y1,x2,y2){
  10. this.p1 = {
  11. x:x1,
  12. y:y1
  13. };
  14. this.p2 = {
  15. x:x2,
  16. y:y2
  17. };
  18. }
  19. getX(t:number){
  20. let x1 = this.p1.x,x2=this.p2.x;
  21. return 3*x1*t*Math.pow(1-t,2) + 3* x2*Math.pow(t,2) * (1-t) + Math.pow(t,3)
  22. }
  23. getY(t:number){
  24. let y1 = this.p1.y,y2=this.p2.y;
  25. return 3*y1*t*Math.pow(1-t,2) + 3*y2*Math.pow(t,2) * (1-t) + Math.pow(t,3)
  26. }
  27. // https://github.com/amfe/amfe-cubicbezier/blob/master/src/index.js
  28. solveCurveX(x:number){
  29. var t2 = x;
  30. var derivative;
  31. var x2;
  32. var p1x = this.p1.x, p2x = this.p2.x;
  33. var ax = 3 * p1x - 3 * p2x + 1;
  34. var bx = 3 * p2x - 6 * p1x;;
  35. var cx = 3 * p1x;;
  36. function sampleCurveDerivativeX(t:number){
  37. // `ax t^3 + bx t^2 + cx t' expanded using Horner 's rule.
  38. return (3 * ax * t + 2 * bx) * t + cx;
  39. }
  40. // https://trac.webkit.org/browser/trunk/Source/WebCore/platform/animation
  41. // First try a few iterations of Newton's method -- normally very fast.
  42. // http://en.wikipedia.org/wiki/Newton's_method
  43. for (let i = 0; i < 8; i++) {
  44. // f(t)-x=0
  45. x2 = this.getX(t2) - x;
  46. if (Math.abs(x2) < this.precision) {
  47. return t2;
  48. }
  49. derivative = sampleCurveDerivativeX(t2);
  50. // == 0, failure
  51. if (Math.abs(derivative) < this.precision) {
  52. break;
  53. }
  54. // xn = x(n-1) - f(xn)/ f'(xn)
  55. // 假设g(x) = f(t) - x
  56. // g'(x) = f'(t)
  57. //所以 f'(t) == g'(t)
  58. // derivative == g'(t)
  59. t2 -= x2 / derivative;
  60. }
  61. // Fall back to the bisection method for reliability.
  62. // bisection
  63. // http://en.wikipedia.org/wiki/Bisection_method
  64. var t1 = 1;
  65. var t0 = 0;
  66. t2 = x;
  67. while (t1 > t0) {
  68. x2 = this.getX(t2) - x;
  69. if (Math.abs(x2) < this.precision) {
  70. return t2;
  71. }
  72. if (x2 > 0) {
  73. t1 = t2;
  74. } else {
  75. t0 = t2;
  76. }
  77. t2 = (t1 + t0) / 2;
  78. }
  79. // Failure
  80. return t2;
  81. }
  82. solve(x:number){
  83. return this.getY( this.solveCurveX(x) )
  84. }
  85. }

最新文章

  1. Android注解使用之使用Support Annotations注解优化代码
  2. golang protobuf SetExtension
  3. python_way day13 sqlalchemy
  4. (step 4.3.5)hdu 1035(Robot Motion——DFS)
  5. php加载memcache
  6. Java中string拼接,StringBuilder,StringBuffer和+
  7. [C#][ASP.net] 透过WebBrowser 取得AJAX 后的网页
  8. hdu 1425 sort
  9. 《JAVASCRIPT高级程序设计》闭包
  10. P1137 旅行计划-----洛谷
  11. 腾讯IVWEB团队:前端 fetch 通信
  12. spring boot redis分布式锁
  13. spark2.1注册内部函数spark.udf.register(&quot;xx&quot;, xxx _),运行时抛出异常:Task not serializable
  14. Java并发之Condition
  15. python3 函数传参练习 全局变量与局部变量 的理解
  16. Python基础之数组和向量化计算总结
  17. 最新版Xamarin Mono For Android、Monotouch 安装、破解(实时同步更新)
  18. Let&#39;s Encrypt泛域名SSL证书申请
  19. 安装和配置hive
  20. SimpleEntity

热门文章

  1. Css3中有关的 @media 媒体查询相关的知识
  2. lg9018题解
  3. Python 常用小例子
  4. Mysql数据库基础第五章:(二)视图
  5. 使用shell判断文件夹中是否包含文件
  6. Section 2.1: Falsy VSTruthy Value and == VS ===
  7. C# 调用Web Api通用方法
  8. windows下搭建stm8s开发环境
  9. 关于nginx隐藏index.php入口文件注意事项
  10. 快速上手springboot(2)