\(\mathcal{Description}\)

  Link.

  有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \(p_{i,k}\)。依照此规则确定权值后,你不停抽卡,每次抽到第 \(i\) 张卡牌的概率正比于 \(w_i\),直到所有卡都被抽过至少一次。

  此后,记 \(t_i\) 表示第 \(i\) 张牌第一次被抽到的时间。给定 \(n-1\) 条形如 \(\lang u,v\rang\) 的限制,表示 \(t_u<t_v\),保证 \(\lang u,v\rang\) 构成的有向图的基图是一棵树。得到的 \(\{t_n\}\) 满足限制的概率,答案模 \(998244353\)。

  \(n\le10^3\)。

\(\mathcal{Solution}\)

  其实是 trick + 板子,但是没见过的话使得想一会儿。

  考虑若树是严格外向树怎么做,这时点 \(u\) 要满足的条件有且仅有「对于所有 \(u\) 子树内的结点 \(v\),\(t_u<t_v\)」。设 \(u\) 子树内的点权和已经确定为 \(s_u\),\(w_u\) 也已确定,则概率显然为 \(\frac{w_u}{s_u}\)。继而得到 DP:令 \(f(u,i)\) 表示 \(u\) 子树内点权和为 \(i\) 时,子树内合法的概率,转移时需要注意 \(\frac{w_u}{s_u}\) 需要转化成条件概率(或者除掉再把新的乘上去)。

  接下来走进一般情况,仍然如外向树般,钦定一个根 \(r\),把指向 \(r\) 的边理解为外向树边“反向”,对于这些边,如果按照正常的外向树做 DP,就相当于「钦定这条限制合法」;如果忽略这条边,就相当于「这条限制不一定合法」,最后能得到「至少有一些限制不合法」,那么带着容斥系数做 DP 就行。复杂度 \(\mathcal O(wn^2)\)。

\(\mathcal{Code}\)

/*+Rainybunny+*/

#include <bits/stdc++.h>

#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i) const int MAXN = 1e3, MOD = 998244353;
int ecnt = 1, n, m, head[MAXN + 5], pr[MAXN + 5][3], inv[MAXN * 3 + 5];
int siz[MAXN + 5], f[MAXN + 5][MAXN * 3 + 5];
struct Edge { int to, nxt; } graph[MAXN * 2 + 5]; inline void link(const int u, const int v) {
graph[++ecnt].to = v, graph[ecnt].nxt = head[u], head[u] = ecnt;
graph[++ecnt].to = u, graph[ecnt].nxt = head[v], head[v] = ecnt;
} inline void subeq(int& u, const int v) { (u -= v) < 0 && (u += MOD); }
inline int mul(const int u, const int v) { return 1ll * u * v % MOD; }
inline int sub(int u, const int v) { return (u -= v) < 0 ? u + MOD : u; }
inline void addeq(int& u, const int v) { (u += v) >= MOD && (u -= MOD); }
inline int add(int u, const int v) { return (u += v) < MOD ? u : u - MOD; }
inline int mpow(int u, int v) {
int ret = 1;
for (; v; u = mul(u, u), v >>= 1) ret = mul(ret, v & 1 ? u : 1);
return ret;
} inline void solve(const int u, const int fa) {
siz[u] = 1;
rep (i, 1, 3) f[u][i] = mul(i, pr[u][i - 1]);
for (int i = head[u], v; i; i = graph[i].nxt) {
if ((v = graph[i].to) != fa) {
solve(v, u); static int tmp[MAXN * 3 + 5];
rep (j, 1, siz[u] * 3) rep (k, 1, siz[v] * 3) {
int t = mul(f[u][j], f[v][k]);
if (i & 1) subeq(tmp[j + k], t), addeq(tmp[j], t);
else addeq(tmp[j + k], t);
}
siz[u] += siz[v];
rep (j, 1, siz[u] * 3) f[u][j] = tmp[j], tmp[j] = 0;
}
}
rep (i, 1, siz[u] * 3) f[u][i] = mul(f[u][i], inv[i]);
} int main() {
scanf("%d", &n);
rep (i, 1, n) {
int s = 0;
rep (j, 0, 2) scanf("%d", &pr[i][j]), s += pr[i][j];
s = mpow(s, MOD - 2);
rep (j, 0, 2) pr[i][j] = mul(s, pr[i][j]);
}
rep (i, 2, n) {
int u, v; scanf("%d %d", &u, &v);
link(u, v);
} inv[1] = 1;
rep (i, 2, 3 * n) inv[i] = mul(inv[MOD % i], MOD - MOD / i);
solve(1, 0); int ans = 0;
rep (i, 1, siz[1] * 3) addeq(ans, f[1][i]);
printf("%d\n", ans);
return 0;
}

最新文章

  1. 一步步搭建react-native环境(苹果OS X)
  2. Spring 事务注解 错误问题
  3. ArcGIS Engine中加载数据
  4. hdu 1496 Equations
  5. Android第三方授权(QQ篇)
  6. 【JAVA - SSM】之MyBatis逆向工程的使用
  7. thinkphp之wampserver安装
  8. 使用国人的koala来重新预编译BOOTSTRAP的LESS文件
  9. 浅谈Linux系统的启动流程
  10. 小红帽5.9 配置静态IP上网问题
  11. 第四章 MyBatis-SQL映射文件
  12. Manager解决Process进程之间的数据访问
  13. 【文献07】基于MPC的WMR点镇定-极坐标系下和轨迹跟踪
  14. 怎么去掉Xcodeproject中的某种类型的警告 Implicit conversion loses integer precision: &amp;#39;NSInteger&amp;#39; (aka &amp;#39;long&amp;#39;) to &amp;#39;int32
  15. Vue系列之 =&gt; 通过vue-resource发起ajax请求
  16. LeetCode 搜索二维矩阵 II
  17. 背水一战 Windows 10 (53) - 控件(集合类): ItemsControl 的布局控件 - ItemsStackPanel, ItemsWrapGrid
  18. python中range()、list()函数的用法
  19. pycharm 模板添加作者时间信息
  20. 关于document.cookie的使用

热门文章

  1. 上传自己的pip模块
  2. Mysql高性能优化
  3. less与sass的区别
  4. 从内存管理原理,窥探OS内存管理机制
  5. 《剑指offer》面试题67. 把字符串转换成整数
  6. context包
  7. C++11之future(二)
  8. gin中模型的绑定和验证
  9. 基于Centos7.X的CS:GO社区服搭建
  10. Android开发之打包apk