背景

在博客 恶心的0.5四舍五入问题 一文中看到一个关于 0.5 不能正确的四舍五入的问题。主要说的是 double 转换到 BigDecimal 后,进行四舍五入得不到正确的结果:

public class BigDecimalTest {
public static void main(String[] args){
double d = 301353.05;
BigDecimal decimal = new BigDecimal(d);
System.out.println(decimal);//301353.0499999999883584678173065185546875
System.out.println(decimal.setScale(1, RoundingMode.HALF_UP));//301353.0
}
}

输出的结果为:

301353.0499999999883584678173065185546875
301353.0

这个结果显然不是我们所期望的,我们希望的是得到 301353.1 。

原因

允许明眼人一眼就看出另外问题所在——BigDecimal的构造函数 public BigDecimal(double val) 损失了double 参数的精度,最后才导致了错误的结果。所以问题的关键是:BigDecimal的构造函数 public BigDecimal(double val) 损失了double 参数的精度。

解决之道

因为上面找到了原因,所以也就很好解决了。只要防止了 double 到 BigDecimal 的精度的损失,也就不会出现问题。

1)很容易想到第一个解决办法:使用BigDecimal的以String为参数的构造函数:public BigDecimal(String val)  来替代。

public class BigDecimalTest {
public static void main(String[] args){
double d = 301353.05;
System.out.println(new BigDecimal(new Double(d).toString()));
System.out.println(new BigDecimal("301353.05"));
System.out.println(new BigDecimal("301353.895898895455898954895989"));
}
}

输出结果:

301353.05
301353.05
301353.895898895455898954895989

我们看到了没有任何的精度损失,四舍五入也就肯定不会出错了。

2)BigDecimal的构造函数 public BigDecimal(double val) 会损失了double 参数的精度,这个也许应该可以算作是 JDK 中的一个 bug 了。既然存在bug,那么我们就应该解决它。上面的办法是绕过了它。现在我们实现自己的 double 到 BigDecimal 的转换,并且保证在某些情况下可以完全不损失 double 的精度。

import java.math.BigDecimal;

public class BigDecimalUtil {

    public static BigDecimal doubleToBigDecimal(double d){
String doubleStr = String.valueOf(d);
if(doubleStr.indexOf(".") != -1){
int pointLen = doubleStr.replaceAll("\\d+\\.", "").length(); // 取得小数点后的数字的位数
pointLen = pointLen > 16 ? 16 : pointLen; // double最大有效小数点后的位数为16
double pow = Math.pow(10, pointLen);
       long tmp = (long)(d * pow);
return new BigDecimal(tmp).divide(new BigDecimal(pow));
}
return new BigDecimal(d);
} public static void main(String[] args){
// System.out.println(doubleToBigDecimal(301353.05));
// System.out.println(doubleToBigDecimal(-301353.05));
// System.out.println(doubleToBigDecimal(new Double(-301353.05)));
// System.out.println(doubleToBigDecimal(301353));
// System.out.println(doubleToBigDecimal(new Double(-301353))); double d = 301353.05;//5898895455898954895989;
System.out.println(doubleToBigDecimal(d));
System.out.println(d);
System.out.println(new Double(d).toString());
System.out.println(new BigDecimal(new Double(d).toString()));
System.out.println(new BigDecimal(d));
}
}

输出结果:

301353.05
301353.05
301353.05
301353.
301353.9999999883584678173065185546875

上面我们自己写了一个工具类,实现了 double 到 BigDecimal 的“无损失”double精度的转换。方法是将小数点后有有效数字的double先转换到小数点后没有有效数字的double,然后在转换到 BigDecimal ,之后使用BigDecimal的 divide 返回之前的大小。

上面的结果看起来好像十分的完美,但是其实是存在问题的。上面我们也说到了“某些情况下可以完全不损失 double 的精度”,我们先看一个例子:

    public static void main(String[] args){
double d = 301353.05;
System.out.println(doubleToBigDecimal(d));
System.out.println(d);
System.out.println(new Double(d).toString());
System.out.println(new BigDecimal(new Double(d).toString()));
System.out.println(new BigDecimal(d)); System.out.println("=========================");
d = 301353.895898895455898954895989;
System.out.println(doubleToBigDecimal(d));
System.out.println(d);
System.out.println(new Double(d).toString());
System.out.println(new BigDecimal(new Double(d).toString()));
System.out.println(new BigDecimal(d));
System.out.println(new BigDecimal("301353.895898895455898954895989")); System.out.println("=========================");
d = 301353.46899434;
System.out.println(doubleToBigDecimal(d));
System.out.println(d);
System.out.println(new Double(d).toString());
System.out.println(new BigDecimal(new Double(d).toString()));
System.out.println(new BigDecimal(d)); System.out.println("=========================");
d = 301353.45789666;
System.out.println(doubleToBigDecimal(d));
System.out.println(d);
System.out.println(new Double(d).toString());
System.out.println(new BigDecimal(new Double(d).toString()));
System.out.println(new BigDecimal(d));
}

输出结果:

301353.05
301353.05
301353.05
301353.05
301353.9999999883584678173065185546875
=========================
301353.8958988954
301353.8958988954
301353.89589889545
301353.89589889545
301353.8958988954593002796173095703125
301353.895898895458954895989
=========================
301353.46899434
301353.46899434
301353.46899434
301353.46899434
301353.46899439862386286258697509765625
=========================
301353.45789666
301353.45789666
301353.45789666
301353.45789666
301353.4578966600238345563411712646484375
我们可以看到:我们自己实现的 doubleToBigDecimal 方法只有在 double 的小数点后的数字位数比较少时(比如只有5,6位),才能保证完全的不损失精度

在 double 的小数点后的数字位数比较多时,d * pow 会存在精度损失,所以最终的结果也会存在精度损失。所以如果小数点后的位数比较多时,还是使用 BigDecimal的 String 参数的构造函数为好,只有在小数点后的位数比较少时,才可以采用自己实现的 doubleToBigDecimal 方法。

因为我们看到原始的double的转换之后的BigDecimal的数字的最后一位一个时5,一个是4,原因是在上面的转换方法中:

long tmp = (long)(d * pow);

这一步可能存在很小的精度损失,因为 d 是一个 double ,d * pow 之后还是一个 double(但是小数点之后都是0了,所以到long的转换没有精度损失) ,所以会存在很小的精度损失(double的计算总是有可能存在精度损失的)。但是这个精度损失和 BigDecimal的构造函数 public BigDecimal(double val) 的精度损失相比而言,不会显得那么的突兀(也许我们自己写的doubleToBigDecimal也是存在问题的,欢迎指点)。

总结

如果需要保证精度,最好是不要使用BigDecimal的double参数的构造函数,因为存在损失double参数精度的可能,最好是使用BigDecimal的String参数的构造函数。最好是杜绝使用BigDecimal的double参数的构造函数。

后记:

其实说这是BigDecimal的一个bug,有标题党的嫌疑,最多可以算作是BigDecimal的一个“坑”。

最新文章

  1. HTML <span> 标签
  2. css之overflow
  3. Retrofit 2.0使用
  4. linux kernel文件系统启动部分
  5. 自定义View(二)--继承自ViewGroup
  6. 移动端的日期插件 mobiscroll 2.14.4 破解版
  7. Filter登录验证过滤器(全局)
  8. 1196: [HNOI2006]公路修建问题 - BZOJ
  9. 神经网络和BP算法推导
  10. 转:window与linux互相拷贝文件
  11. java开发工具STS的下载及安装
  12. hadoop mapreduce 基础实例一记词
  13. 【转载】C# 泛型详解
  14. dubbo 熔断,限流,降级
  15. ASP.NET Boilerplate 学习
  16. Arcgis发布服务
  17. Pronunciation – The Definitive Guide to the Top 100 Words in American English
  18. Warm up HDU - 4612( 树的直径 边双连通分量)
  19. WPF基础学习笔记整理 (六) RoutedEvent路由事件
  20. SQLServer随机取记录

热门文章

  1. 使用WinDbg调试SQL Server查询
  2. .net core 1.0 Web MVC 自定义认证过程
  3. Redis设计与实现-内部数据结构篇
  4. MVC中Action之间传值
  5. HNU 13308 Help cupid
  6. Orleans 之 监控工具的使用
  7. 重构第15天 移除重复的代码(Remove Duplication)
  8. PHP(1)——学习之前做点啥准备
  9. 窗体==>>初始Windows程序
  10. ahjesus 捕获entity framework生成的sql语句