[问题2014S10]  解答

先证明一个简单的引理.

引理  设 \(\lambda_0\) 是 \(n\) 阶方阵 \(A\) 的特征值, 则对任意的正整数 \(k\), Jordan 块 \(J_k(\lambda_0)\) 在 \(A\) 的 Jordan 标准型 \(J\) 中出现的个数为 \[\mathrm{rank}\big((A-\lambda_0I_n)^{k-1}\big)+\mathrm{rank}\big((A-\lambda_0I_n)^{k+1}\big)-2\,\mathrm{rank}\big((A-\lambda_0I_n)^k\big),\] 其中约定 \(\mathrm{rank}\big((A-\lambda_0I_n)^0\big)=n\).

引理的证明  注意到 \(\mathrm{rank}\big((J-\lambda_0I_n)^{k-1}\big)-\mathrm{rank}\big((J-\lambda_0I_n)^k\big)\) 是 \(J\) 中关于特征值 \(\lambda_0\) 的阶数大于等于 \(k\) 的 Jordan 块的个数; 同理 \(\mathrm{rank}\big((J-\lambda_0I_n)^k\big)-\mathrm{rank}\big((J-\lambda_0I_n)^{k+1}\big)\) 是 \(J\) 中关于特征值 \(\lambda_0\) 的阶数大于等于 \(k+1\) 的 Jordan 块的个数, 因此 \(J\) 中关于特征值 \(\lambda_0\) 的阶数等于 \(k\) 的 Jordan 块的个数为 \begin{eqnarray*} & & \Big[\mathrm{rank}\big((J-\lambda_0I_n)^{k-1}\big)-\mathrm{rank}\big((J-\lambda_0I_n)^k\big)\Big]-\Big[\mathrm{rank}\big((J-\lambda_0I_n)^k\big)-\mathrm{rank}\big((J-\lambda_0I_n)^{k+1}\big)\Big] \\ &=& \mathrm{rank}\big((J-\lambda_0I_n)^{k-1}\big)+\mathrm{rank}\big((J-\lambda_0I_n)^{k+1}\big)-2\,\mathrm{rank}\big((J-\lambda_0I_n)^k\big) \\ &=& \mathrm{rank}\big((A-\lambda_0I_n)^{k-1}\big)+\mathrm{rank}\big((A-\lambda_0I_n)^{k+1}\big)-2\,\mathrm{rank}\big((A-\lambda_0I_n)^k\big). \quad\Box \end{eqnarray*}

原题的证明  我们只证明充分性, 必要性是显然的.

设 \(P,Q\) 为 \(n\) 阶非异阵, 使得 \(PAQ=A_1=\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}\) 为 \(A\) 的相抵标准型. 令 \(B_1=Q^{-1}BP^{-1}\), 则 \[AB=P^{-1}A_1Q^{-1}QB_1P=P^{-1}\big(A_1B_1\big)P,\] \[BA=QB_1PP^{-1}A_1Q^{-1}=Q\big(B_1A_1\big)Q^{-1}.\] 注意到题目的条件和结论在相似关系下不改变, 故不妨设 \(A=\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}\) 为相抵标准型. 再对 \(B\) 进行分块: \(B=\begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}\), 其中 \(B_{11}\) 为 \(r\) 阶方阵, \(B_{22}\) 为 \(n-r\) 阶方阵, 则 \[AB=\begin{bmatrix} B_{11} & B_{12} \\ 0 & 0 \end{bmatrix},\,\,BA=\begin{bmatrix} B_{11} & 0 \\ B_{21} & 0 \end{bmatrix},\] 从而有 \[|\lambda I_n-AB|=|\lambda I_n-BA|=\lambda^{n-r}|\lambda I_r-B_{11}|,\] 即 \(AB\) 和 \(BA\) 的全体特征值相同, 都等于 \(B_{11}\) 的全部特征值再加上 \(n-r\) 个 \(0\). 对 \(B_{11}\) 的 (也即 \(AB\) 和 \(BA\) 的) 任意非零特征值 \(\lambda_0\), 经简单计算可得 \[(AB-\lambda_0I_n)^k=\begin{bmatrix} (B_{11}-\lambda_0I_r)^k & * \\ 0 & (-\lambda_0)^kI_{n-r} \end{bmatrix},\] \[(BA-\lambda_0I_n)^k=\begin{bmatrix} (B_{11}-\lambda_0I_r)^k & 0 \\ * & (-\lambda_0)^kI_{n-r} \end{bmatrix},\] 从而有 \[\mathrm{rank}\big((AB-\lambda_0I_n)^k\big)=\mathrm{rank}\big((B_{11}-\lambda_0I_r)^k\big)+(n-r),\] \[\mathrm{rank}\big((BA-\lambda_0I_n)^k\big)=\mathrm{rank}\big((B_{11}-\lambda_0I_r)^k\big)+(n-r),\] 因此对任意的正整数 \(k\), \[\mathrm{rank}\big((AB-\lambda_0I_n)^k\big)=\mathrm{rank}\big((BA-\lambda_0I_n)^k\big).\] 由引理知, Jordan 块 \(J_k(\lambda_0)\,(k\geq 1)\) 在 \(AB\) 和 \(BA\) 的 Jordan 标准型中出现的个数相等. 又由题目条件和引理知, Jordan 块 \(J_k(0)\,(k\geq 1)\) 在 \(AB\) 和 \(BA\) 的 Jordan 标准型中出现的个数相等, 因此 \(AB\) 和 \(BA\) 具有相同的 Jordan 标准型, 从而 \(AB\) 与 \(BA\) 相似.  \(\Box\)

最新文章

  1. Oracle EBS - Doc
  2. 安装InfoPath 2013后 SharePoint 2010 出现 “找不到 Microsoft.Office.InfoPath, Version=14.0.0....” 的错误的解决方案
  3. 2-MySQL数据库编码uft-8
  4. adnroid 监听软键盘的显隐
  5. css3选择器(上)
  6. [webgrid] – header - (How to Add custom html to Header in WebGrid)
  7. CSS中id与class命名规则及编码最佳习惯
  8. A+B Problem III-(涉及误差)NYOJ-477
  9. 基于HTML5的燃气3D培训仿真系统
  10. noi 97 积木游戏
  11. WPF textbox 圆角制作
  12. 使用vs2010编译 Python \ SIP \ PyQt4
  13. Huffman编码实现电文的转码与译码
  14. css 实现进度条
  15. Cocos2d-x 3.0 创建一个场景,并设置现场的时候,项目开始执行上主动
  16. Jquery中attr 和 prop的区别和联系
  17. scala的多种集合的使用(2)之集合常用方法
  18. python学习笔记(八)、特殊方法、特性和迭代器
  19. js中prototype,constructor的理解
  20. 【LeetCode】9. 回文数

热门文章

  1. jquery 温故而知新 animate动画的一些坑
  2. CacheManagerUtils.java
  3. Unity学习疑问记录之隐藏与显示物体
  4. IOS网络第二天 - 02-异步HTTP请求block回调 解析
  5. Thinking in Java——笔记(5)
  6. Ffmpeg
  7. 一步一步来做WebQQ机器人-(一)(验证码)
  8. Shell displays color output
  9. Java学习-045-目录中文件拷贝
  10. [转]Android View.onMeasure方法的理解