为什么要使用线程池

线程是一个操作系统概念。操作系统负责这个线程的创建、挂起、运行、阻塞和终结操作。而操作系统创建线程、切换线程状态、终结线程都要进行CPU调度——这是一个耗费时间和系统资源的事情。 另一方面,大多数实际场景中是这样的:处理某一次请求的时间是非常短暂的,但是请求数量是巨大的。这种技术背景下,如果我们为每一个请求都单独创建一个线程,那么物理机的所有资源基本上都被操作系统创建线程、切换线程状态、销毁线程这些操作所占用,用于业务请求处理的资源反而减少了。所以最理想的处理方式是,将处理请求的线程数量控制在一个范围,既保证后续的请求不会等待太长时间,又保证物理机将足够的资源用于请求处理本身。另外,一些操作系统是有最大线程数量限制的。当运行的线程数量逼近这个值的时候,操作系统会变得不稳定。这也是我们要限制线程数量的原因。

线程池的基本使用方式

JAVA语言为我们提供了两种基础线程池的选择:ScheduledThreadPoolExecutor和ThreadPoolExecutor。它们都实现了ExecutorService接口(注意,ExecutorService接口本身和“线程池”并没有直接关系,它的定义更接近“执行器”,而“使用线程管理的方式进行实现”只是其中的一种实现方式)。这篇文章中,我们主要围绕ThreadPoolExecutor类进行讲解。

ThreadPoolExecutor类的使用方式:

* corePoolSize:核心大小,线程池初始化的时候,就会有这么大

* maximumPoolSize:线程池最大线程数

* keepAliveTime:如果当前线程池中线程数大于corePoolSize。多余的线程,在等待keepAliveTime时间后如果还没有新的线程任务指派给它,它就会被回收

* unit:等待时间keepAliveTime的单位

* workQueue:等待队列。这个对象的设置是本文将重点介绍的内容

下文中,将对线程池中的corePoolSize、maximumPoolSize、keepAliveTime、timeUnit、workQueue、threadFactory、handler参数和一些常用/不常用的设置项进行逐一讲解。

ThreadPoolExecutor逻辑结构和工作方式

ThreadPoolExecutor中最简单的一个构造函数:需要传入的参数包括corePoolSize、maximumPoolSize、keepAliveTime、timeUnit和workQueue。

存在于线程池中容器的一定是Thread对象,而不是你要求运行的任务(所以叫线程池而不叫任务池也不叫对象池);你要求运行的任务将被线程池分配给某一个空闲的Thread运行。

构成线程池的几个重要元素:

● 等待队列:顾名思义,就是你调用线程池对象的execute()方法或者submit()方法,要求线程池运行的任务(这些任务必须实现Runnable接口或者Callable接口)。但是出于某些原因线程池并没有马上运行这些任务,而是送入一个队列等待执行。

● 核心线程:线程池主要用于执行任务的是“核心线程”,“核心线程”的数量是你创建线程时所设置的corePoolSize参数决定的。如果不进行特别的设定,线程池中始终会保持corePoolSize数量的线程数(不包括创建阶段)。

● 非核心线程:一旦任务数量过多(由等待队列的特性决定),线程池将创建“非核心线程”临时帮助运行任务。你设置的大于corePoolSize参数小于maximumPoolSize参数的部分,就是线程池可以临时创建的“非核心线程”的最大数量。这种情况下如果某个线程没有运行任何任务,在等待keepAliveTime时间后,这个线程将会被销毁,直到线程池的线程数量重新达到corePoolSize。

● maximumPoolSize参数也是当前线程池允许创建的最大线程数量。那么如果设置的corePoolSize参数和设置的maximumPoolSize参数一致时,线程池在任何情况下都不会回收空闲线程。keepAliveTime和timeUnit也就失去了意义。

● keepAliveTime参数和timeUnit参数也是配合使用的。keepAliveTime参数指明等待时间的量化值,timeUnit指明量化值单位。例如keepAliveTime=1,timeUnit为TimeUnit.MINUTES,代表空闲线程的回收阀值为1分钟。

线程池某一个运行任务处理过程

1、首先可以通过线程池提供的submit()方法或者execute()方法,要求线程池执行某个任务。线程池收到这个要求执行的任务后,会有几种处理情况:

1.1、如果当前线程池中运行的线程数量还没有达到corePoolSize大小时,线程池会创建一个新的线程运行你的任务,无论之前已经创建的线程是否处于空闲状态。

1.2、如果当前线程池中运行的线程数量已经达到设置的corePoolSize大小,线程池会把你的这个任务加入到等待队列中。直到某一个的线程空闲了,线程池会根据设置的等待队列规则,从队列中取出一个新的任务执行。

1.3、如果根据队列规则,这个任务无法加入等待队列。这时线程池就会创建一个“非核心线程”直接运行这个任务。注意,如果这种情况下任务执行成功,那么当前线程池中的线程数量一定大于corePoolSize。

1.4、如果这个任务,无法被“核心线程”直接执行,又无法加入等待队列,又无法创建“非核心线程”直接执行,且你没有为线程池设置RejectedExecutionHandler。这时线程池会抛出RejectedExecutionException异常,即线程池拒绝接受这个任务。(实际上抛出RejectedExecutionException异常的操作,是ThreadPoolExecutor线程池中一个默认的RejectedExecutionHandler实现:AbortPolicy,这在后文会提到)

2、一旦线程池中某个线程完成了任务的执行,它就会试图到任务等待队列中去拿下一个等待任务(所有的等待任务都实现了BlockingQueue接口,按照接口字面上的理解,这是一个可阻塞的队列接口),它会调用等待队列的poll()方法,并停留在哪里。

3、当线程池中的线程超过你设置的corePoolSize参数,说明当前线程池中有所谓的“非核心线程”。那么当某个线程处理完任务后,如果等待keepAliveTime时间后仍然没有新的任务分配给它,那么这个线程将会被回收。线程池回收线程时,对所谓的“核心线程”和“非核心线程”是一视同仁的,直到线程池中线程的数量等于你设置的corePoolSize参数时,回收过程才会停止。

Executor 可以创建3 种类型的ThreadPoolExecutor 线程池:

1. FixedThreadPool

创建固定长度的线程池,每次提交任务创建一个线程,直到达到线程池的最大数量,线程池的大小不再变化。

这个线程池可以创建固定线程数的线程池。特点就是可以重用固定数量线程的线程池。它的构造源码如下:

public static ExecutorService newFixedThreadPool(int nThreads) {

        return new ThreadPoolExecutor(nThreads, nThreads, 0L,

                                      TimeUnit.MILLISECONDS,

                                      new LinkedBlockingQueue<Runnable>());

}

FixedThreadPool的corePoolSize和maxiumPoolSize都被设置为创建FixedThreadPool时指定的参数nThreads。

0L则表示当线程池中的线程数量操作核心线程的数量时,多余的线程将被立即停止

最后一个参数表示FixedThreadPool使用了无界队列LinkedBlockingQueue作为线程池的做工队列,由于是无界的,当线程池的线程数达到corePoolSize后,新任务将在无界队列中等待,因此线程池的线程数量不会超过corePoolSize,同时maxiumPoolSize也就变成了一个无效的参数,并且运行中的线程池并不会拒绝任务。

执行过程如下:

1.如果当前工作中的线程数量少于corePool的数量,就创建新的线程来执行任务。

2.当线程池的工作中的线程数量达到了corePool,则将任务加入LinkedBlockingQueue。

3.线程执行完1中的任务后会从队列中去任务。

注意LinkedBlockingQueue是无界队列,所以可以一直添加新任务到线程池。

2. SingleThreadExecutor  

SingleThreadExecutor是使用单个worker线程的Executor。特点是使用单个工作线程执行任务。它的构造源码如下:

public static ExecutorService newSingleThreadExecutor() {

        return new FinalizableDelegatedExecutorService

            (new ThreadPoolExecutor(1, 1,

                                    0L, TimeUnit.MILLISECONDS,

                                    new LinkedBlockingQueue<Runnable>()));

}

SingleThreadExecutor的corePoolSize和maxiumPoolSize都被设置1。其他参数均与FixedThreadPool相同

执行过程如下:

1.如果当前工作中的线程数量少于corePool的数量,就创建一个新的线程来执行任务。

2.当线程池的工作中的线程数量达到了corePool,则将任务加入LinkedBlockingQueue。

3.线程执行完1中的任务后会从队列中去任务。

注意:由于在线程池中只有一个工作线程,所以任务可以按照添加顺序执行。

3. CachedThreadPool

CachedThreadPool是一个”无限“容量的线程池,它会根据需要创建新线程。特点是可以根据需要来创建新的线程执行任务,没有特定的corePool。下面是它的构造方法:

public static ExecutorService newCachedThreadPool() {

        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,

                                      60L, TimeUnit.SECONDS,

                                      new SynchronousQueue<Runnable>());

}

 

CachedThreadPool的corePoolSize被设置为0,即corePool为空;maximumPoolSize被设置为Integer.MAX_VALUE,即maximum是无界的。这里keepAliveTime设置为60秒,意味着空闲的线程最多可以等待任务60秒,否则将被回收。

CachedThreadPool使用没有容量的SynchronousQueue作为主线程池的工作队列,它是一个没有容量的阻塞队列。每个插入操作必须等待另一个线程的对应移除操作。这意味着,如果主线程提交任务的速度高于线程池中处理任务的速度时,CachedThreadPool会不断创建新线程。极端情况下,CachedThreadPool会因为创建过多线程而耗尽CPU资源。

执行过程如下:

1.首先执行SynchronousQueue.offer(Runnable task)。如果在当前的线程池中有空闲的线程正在执行SynchronousQueue.poll(),那么主线程执行的offer操作与空闲线程执行的poll操作配对成功,主线程把任务交给空闲线程执行。,execute()方法执行成功,否则执行步骤2

2.当线程池为空(初始maximumPool为空)或没有空闲线程时,配对失败,将没有线程执行SynchronousQueue.poll操作。这种情况下,线程池会创建一个新的线程执行任务。

3.在创建完新的线程以后,将会执行poll操作。当步骤2的线程执行完成后,将等待60秒,如果此时主线程提交了一个新任务,那么这个空闲线程将执行新任务,否则被回收。因此长时间不提交任务的CachedThreadPool不会占用系统资源。SynchronousQueue是一个不存储元素阻塞队列,每次要进行offer操作时必须等待poll操作,否则不能继续添加元素。

不常用的设置

在ThreadPoolExecutor线程池中,有一些不常用的甚至不需要的设置

allowCoreThreadTimeOut:

线程池回收线程只会发生在当前线程池中线程数量大于corePoolSize参数的时候;当线程池中线程数量小于等于corePoolSize参数的时候,回收过程就会停止。

allowCoreThreadTimeOut设置项可以要求线程池:将包括“核心线程”在内的,没有任务分配的任何线程,在等待keepAliveTime时间后全部进行回收:

prestartAllCoreThreads

前文我们还讨论到,当线程池中的线程还没有达到你设置的corePoolSize参数值的时候,如果有新的任务到来,线程池将创建新的线程运行这个任务,无论之前已经创建的线程是否处于空闲状态。

prestartAllCoreThreads设置项,可以在线程池创建,但还没有接收到任何任务的情况下,先行创建符合corePoolSize参数值的线程数:

ThreadPoolExecutor poolExecutor =new

 ThreadPoolExecutor(5,10,1,

 TimeUnit.MINUTES, new

 ArrayBlockingQueue<Runnable>(1));

poolExecutor.prestartAllCoreThreads();

我们继续讨论ThreadPoolExecutor线程池。上面给出的最简单的ThreadPoolExecutor线程池的使用方式中,我们只采用了ThreadPoolExecutor最简单的一个构造函数

在上文中我们还没有介绍的workQueue、threadFactory和handler参数,将是本文讲解的重点。

一:ThreadFactory的使用

线程池最主要的一项工作,就是在满足某些条件的情况下创建线程。而在ThreadPoolExecutor线程池中,创建线程的工作交给ThreadFactory来完成。要使用线程池,就必须要指定ThreadFactory。

类似于上文中,如果我们使用的构造函数时并没有指定使用的ThreadFactory,这个时候ThreadPoolExecutor会使用一个默认的ThreadFactory:DefaultThreadFactory。(这个类在Executors工具类中)

当然,在某些特殊业务场景下,还可以使用一个自定义的ThreadFactory线程工厂

二:线程池的等待队列

在使用ThreadPoolExecutor线程池的时候,需要指定一个实现了BlockingQueue接口的任务等待队列。在ThreadPoolExecutor线程池的API文档中,一共推荐了三种等待队列,它们是:SynchronousQueue、LinkedBlockingQueue和ArrayBlockingQueue;

2.1有限队列

● SynchronousQueue:是这样 一种阻塞队列,其中每个 put 必须等待一个 take,反之亦然。同步队列没有任何内部容量。翻译一下:这是一个内部没有任何容量的阻塞队列,任何一次插入操作的元素都要等待相对的删除/读取操作,否则进行插入操作的线程就要一直等待,反之亦然。

● ArrayBlockingQueue:一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。新元素插入到队列的尾部,队列获取操作则是从队列头部开始获得元素。这是一个典型的“有界缓存区”,固定大小的数组在其中保持生产者插入的元素和使用者提取的元素。一旦创建了这样的缓存区,就不能再增加其容量。试图向已满队列中放入元素会导致操作受阻塞;试图从空队列中提取元素将导致类似阻塞。

2.2无限队列

● LinkedBlockingQueue:LinkedBlockingQueue是我们在ThreadPoolExecutor线程池中常用的等待队列。它可以指定容量也可以不指定容量。由于它具有“无限容量”的特性,所以我还是将它归入了无限队列的范畴(实际上任何无限容量的队列/栈都是有容量的,这个容量就是Integer.MAX_VALUE)。LinkedBlockingQueue的实现是基于链表结构,而不是类似ArrayBlockingQueue那样的数组。但实际使用过程中,不需要关心它的内部实现,如果指定了LinkedBlockingQueue的容量大小,那么它反映出来的使用特性就和ArrayBlockingQueue类似了。

● LinkedBlockingDeque:LinkedBlockingDeque是一个基于链表的双端队列。LinkedBlockingQueue的内部结构决定了它只能从队列尾部插入,从队列头部取出元素;但是LinkedBlockingDeque既可以从尾部插入/取出元素,还可以从头部插入元素/取出元素。

● PriorityBlockingQueue:PriorityBlockingQueue是一个按照优先级进行内部元素排序的无限队列。存放在PriorityBlockingQueue中的元素必须实现Comparable接口,这样才能通过实现compareTo()方法进行排序。优先级最高的元素将始终排在队列的头部;PriorityBlockingQueue不会保证优先级一样的元素的排序,也不保证当前队列中除了优先级最高的元素以外的元素,随时处于正确排序的位置。这是什么意思呢?PriorityBlockingQueue并不保证除了队列头部以外的元素排序一定是正确的。

● LinkedTransferQueue:LinkedTransferQueue也是一个无限队列,它除了具有一般队列的操作特性外(先进先出),还具有一个阻塞特性:LinkedTransferQueue可以由一对生产者/消费者线程进行操作,当消费者将一个新的元素插入队列后,消费者线程将会一直等待,直到某一个消费者线程将这个元素取走,反之亦然。

三:拒绝任务(handler)

在ThreadPoolExecutor线程池中还有一个重要的接口:RejectedExecutionHandler。当提交给线程池的某一个新任务无法直接被线程池中“核心线程”直接处理,又无法加入等待队列,也无法创建新的线程执行;又或者线程池已经调用shutdown()方法停止了工作;又或者线程池不是处于正常的工作状态;这时候ThreadPoolExecutor线程池会拒绝处理这个任务,触发创建ThreadPoolExecutor线程池时定义的RejectedExecutionHandler接口的实现

在创建ThreadPoolExecutor线程池时,一定会指定RejectedExecutionHandler接口的实现。如果调用的是不需要指定RejectedExecutionHandler接口的构造函数,在ThreadPoolExecutor中已经提供了四种可以直接使用的RejectedExecutionHandler接口的实现:

● CallerRunsPolicy:这个拒绝处理器,将直接运行这个任务的run方法。但是,请注意并不是在ThreadPoolExecutor线程池中的线程中运行,而是直接调用这个任务实现的run方法。

● AbortPolicy:这个处理器,在任务被拒绝后会创建一个RejectedExecutionException异常并抛出。这个处理过程也是ThreadPoolExecutor线程池默认的RejectedExecutionHandler实现。

● DiscardPolicy:DiscardPolicy处理器,将会默默丢弃这个被拒绝的任务,不会抛出异常,也不会通过其他方式执行这个任务的任何一个方法,更不会出现任何的日志提示。

● DiscardOldestPolicy:这个处理器很有意思。它会检查当前ThreadPoolExecutor线程池的等待队列。并调用队列的poll()方法,将当前处于等待队列列头的等待任务强行取出,然后再试图将当前被拒绝的任务提交到线程池执行

实际上CallerRunsPolicy、DiscardPolicy、DiscardOldestPolicy处理器针对被拒绝的任务并不是一个很好的处理方式。CallerRunsPolicy在非线程池以外直接调用任务的run方法,可能会造成线程安全上的问题;DiscardPolicy默默的忽略掉被拒绝任务,也没有输出日志或者提示,开发人员不会知道线程池的处理过程出现了错误;DiscardOldestPolicy中e.getQueue().poll()的方式好像是科学的,但是如果等待队列出现了容量问题,大多数情况下就是这个线程池的代码出现了BUG。最科学的的还是AbortPolicy提供的处理方式:抛出异常,由开发人员进行处理。

最新文章

  1. ES6入门系列四(测试题分析)
  2. 【jQuery】serializeArray()与serialize()的区别
  3. ABAP modify screen:修改屏幕,实现隐藏、禁止输入字段
  4. LDAP介绍
  5. webservice soapclient报错Error fetching http headers
  6. Matlab 支持向量机(SVM)实现多分类
  7. VMware系统运维(六)VMware vSphere Web Client安装
  8. codevs 3052 多米诺 二分图匹配
  9. [Powershell] FTP Download File
  10. html回车事件
  11. Java利用POI生成Excel强制换行
  12. Linux安装Tomcat外部不能访问
  13. 《阿里巴巴Android编码规范》阅读纪要(一)
  14. leetCode刷题(将字符串转成W形状的字符串再以Z形字符串输出)
  15. 初学者如何理解tomcat服务器?
  16. myql 格式化日期
  17. Docker 管理工具 Portainer部署
  18. go语言爬虫 - TapTap用户都喜欢些什么游戏
  19. Unused Method(不再使用的方法)——Dead Code(死亡代码)
  20. gi常用命令

热门文章

  1. RabbitMQ 四种Exchange
  2. RVO和NRVO
  3. I/O完成端口(IOCP)
  4. Android Fragment用法详解(1)--静态使用Fragment
  5. [poj1410]Intersection
  6. newcoder中的基础题
  7. session和cookie个字消除的方法
  8. 写一个函数封装printf用作trace
  9. Blender 工具使用—–准星
  10. JavaPersistenceWithHibernate第二版笔记-第六章-Mapping inheritance-007Inheritance of embeddable classes(@MappedSuperclass、@Embeddable、@AttributeOverrides、、)