题目描述

求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之和。

输入

一个正整数T表示数据组数
接下来T行 每行两个正整数 表示N、M

输出

T行 每行一个整数 表示第i组数据的结果

样例输入

4
2 4
3 3
6 5
8 3

样例输出

24
28
233
178


题解

莫比乌斯反演+线性筛

(为了方便,以下公式默认$n\le m$)

$\ \ \ \ \sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)\\=\sum\limits_{d=1}^n|\mu(d)|\sum\limits_{i=1}^n\sum\limits_{j=1}^m[gcd(i,j)=d]\frac{ij}d\\=\sum\limits_{d=1}^n|\mu(d)|\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor\frac md\rfloor}[gcd(i,j)=1]ijd\\=\sum\limits_{d=1}^nd|\mu(d)|\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}i\sum\limits_{j=1}^{\lfloor\frac md\rfloor}j\sum\limits_{p|gcd(i,j)}\mu(p)\\=\sum\limits_{d=1}^nd|\mu(d)|\sum\limits_{p=1}^{\lfloor\frac nd\rfloor}\mu(p)\sum\limits_{i=1}^{\lfloor\frac n{dp}\rfloor}ip\sum\limits_{j=1}^{\lfloor\frac m{dp}\rfloor}jp\\=\sum\limits_{d=1}^nd|\mu(d)|\sum\limits_{p=1}^{\lfloor\frac nd\rfloor}p^2\mu(p)s(\lfloor\frac n{dp}\rfloor)s(\lfloor\frac m{dp}\rfloor)$

其中$s(n)=\sum\limits_{i=1}^ni$

然后再令$D=dp$,可以得到:

$\ \ \ \ \sum\limits_{d=1}^nd|\mu(d)|\sum\limits_{p=1}^{\lfloor\frac nd\rfloor}p^2\mu(p)s(\lfloor\frac n{dp}\rfloor)s(\lfloor\frac m{dp}\rfloor)\\=\sum\limits_{D=1}^ns(\lfloor\frac nD\rfloor)s(\lfloor\frac mD\rfloor)\sum\limits_{p|D}p^2\mu(p)·\frac Dp|\mu(\frac Dp)|\\=\sum\limits_{D=1}^nD·s(\lfloor\frac nD\rfloor)·s(\lfloor\frac mD\rfloor)\sum\limits_{p|D}p·\mu(p)·|\mu(\frac Dp)|$

设后面的式子为$f(D)$,那么其为积性函数,因此可以快筛。具体方法:当$D$为质数时为$f(D)=1-D$,否则将$D$分解为$vp^a$,其中$p$为最小质因子。当$a\ge3$时$f(p^a)$一定等于0,否则直接计算即可。

之后求前缀和,分块处理即可。

时间复杂度$O(n+T\sqrt{n})=O(能过)$

其中本题的对$2^{30}$取模,可以直接自然溢出uint,然后最后的答案&$2^{30}-1$

#include <cstdio>
#include <algorithm>
#define N 4000010
#define k 4000000
using namespace std;
unsigned f[N] , prime[N] , tot , np[N] , sum[N];
inline unsigned s(unsigned n)
{
return n * (n + 1) / 2;
}
int main()
{
unsigned i , j , n , m , last , ans;
int T;
sum[1] = f[1] = 1;
for(i = 2 ; i <= k ; i ++ )
{
if(!np[i]) f[i] = 1 - i , prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= k ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
if(i / prime[j] % prime[j] == 0) f[i * prime[j]] = 0;
else f[i * prime[j]] = -f[i / prime[j]] * prime[j];
break;
}
else f[i * prime[j]] = f[i] * f[prime[j]];
}
sum[i] = sum[i - 1] + f[i] * i;
}
scanf("%d" , &T);
while(T -- )
{
scanf("%u%u" , &n , &m) , ans = 0;
for(i = 1 ; i <= n && i <= m ; i = last + 1)
last = min(n / (n / i) , m / (m / i)) , ans += s(n / i) * s(m / i) * (sum[last] - sum[i - 1]);
printf("%u\n" , ans & ((1 << 30) - 1));
}
return 0;
}

最新文章

  1. SQL Server全时区转换
  2. Oracle补习班第三天
  3. 前端程序员应该知道的15个 jQuery 小技巧
  4. DDD:整理了一些关于验证方面的文章
  5. 在VS2010 中兼容Qt4和Qt5
  6. POJ 2385 DP
  7. jquery判断输入文字个数的统计代码
  8. SVN Git 设置忽略目录 大全
  9. Effective C++_笔记_条款04_确定对象被使用之前已先被初始化
  10. 转:修改Tomcat控制台标题
  11. 深入理解Linux内核 学习笔记(3)
  12. Codeforces 438E The Child and Binary Tree [DP,生成函数,NTT]
  13. Java课程寒假之开发记账本软件(网页版)之一
  14. Python sqlalchemy的基本使用
  15. sqlserver游标概念与实例全面解说
  16. Redis持久化磁盘IO方式及其带来的问题
  17. springboot设置返回值的编码
  18. 深入浅出 Java Concurrency (14): 锁机制 part 9 读写锁 (ReentrantReadWriteLock) (2)
  19. HDU 5136 Yue Fei&#39;s Battle
  20. SOA 面向服务架构 阅读笔记(四)

热门文章

  1. 在Linux文件清空的几种方法
  2. VCTransitionsLibrary –自定义iOS交互式转场动画的库
  3. POJ1286 Necklace of Beads(Polya定理)
  4. 异构数据库迁移&mdash;&mdash;DATAX
  5. springMVC-基本认识
  6. 轻量级自动化工具 pssh
  7. datatable行内内容太长,有时不自动换行解决方法
  8. tcl之控制流-break/continue
  9. 微信小程序CheckBox选中事件
  10. 【转载】Callable、FutureTask中阻塞超时返回的坑点