目录

主成分分析(PCA)——以葡萄酒数据集分类为例

  1、认识PCA

    (1)简介

    (2)方法步骤

  2、提取主成分

  3、主成分方差可视化

  4、特征变换

  5、数据分类结果

  6、完整代码

  总结:


1、认识PCA

(1)简介

数据降维的一种方法是通过特征提取实现,主成分分析PCA就是一种无监督数据压缩技术,广泛应用于特征提取和降维。

换言之,PCA技术就是在高维数据中寻找最大方差的方向,将这个方向投影到维度更小的新子空间。例如,将原数据向量x,通过构建  维变换矩阵 W,映射到新的k维子空间,通常()。

原数据d维向量空间  经过 ,得到新的k维向量空间 .

第一主成分有最大的方差,在PCA之前需要对特征进行标准化,保证所有特征在相同尺度下均衡。

(2)方法步骤

  1. 标准化d维数据集
  2. 构建协方差矩阵。
  3. 将协方差矩阵分解为特征向量和特征值。
  4. 对特征值进行降序排列,相应的特征向量作为整体降序。
  5. 选择k个最大特征值的特征向量,
  6. 根据提取的k个特征向量构造投影矩阵
  7. d维数据经过变换获得k维。

下面使用python逐步完成葡萄酒的PCA案例。

2、提取主成分

下载葡萄酒数据集wine.data到本地,或者到时在加载数据代码是从远程服务器获取,为了避免加载超时推荐下载本地数据集。

来看看数据集长什么样子!一共有3类,标签为1,2,3 。每一行为一组数据,由13个维度的值表示,我们将它看成一个向量。

开始加载数据集。

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt # load data
df_wine = pd.read_csv('D:\\PyCharm_Project\\maching_learning\\wine_data\\wine.data', header=None) # 本地加载,路径为本地数据集存放位置
# df_wine=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data',header=None)#服务器加载

下一步将数据按7:3划分为training-data和testing-data,并进行标准化处理。

# split the data,train:test=7:3
x, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, stratify=y, random_state=0) # standardize the feature 标准化
sc = StandardScaler()
x_train_std = sc.fit_transform(x_train)
x_test_std = sc.fit_transform(x_test)

这个过程可以自行打印出数据进行观察研究。

接下来构造协方差矩阵。 维协方差对称矩阵,实际操作就是计算不同特征列之间的协方差。公式如下:

公式中,jk就是在矩阵中的行列下标,i表示第i行数据,分别为特征列 j,k的均值。最后得到的协方差矩阵是13*13,这里以3*3为例,如下:

下面使用numpy实现计算协方差并提取特征值和特征向量。

# 构造协方差矩阵,得到特征向量和特征值
cov_matrix = np.cov(x_train_std.T)
eigen_val, eigen_vec = np.linalg.eig(cov_matrix)
# print("values\n ", eigen_val, "\nvector\n ", eigen_vec)# 可以打印看看

3、主成分方差可视化

首先,计算主成分方差比率,每个特征值方差与特征值方差总和之比:

代码实现:

# 解释方差比
tot = sum(eigen_val) # 总特征值和
var_exp = [(i / tot) for i in sorted(eigen_val, reverse=True)] # 计算解释方差比,降序
# print(var_exp)
cum_var_exp = np.cumsum(var_exp) # 累加方差比率
plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='独立解释方差') # 柱状 Individual_explained_variance
plt.step(range(1, 14), cum_var_exp, where='mid', label='累加解释方差') # Cumulative_explained_variance
plt.ylabel("解释方差率")
plt.xlabel("主成分索引")
plt.legend(loc='right')
plt.show()

可视化结果看出,第一二主成分占据大部分方差,接近60%。

4、特征变换

这一步需要构造之前讲到的投影矩阵,从高维d变换到低维空间k。

先将提取的特征对进行降序排列:

# 特征变换
eigen_pairs = [(np.abs(eigen_val[i]), eigen_vec[:, i]) for i in range(len(eigen_val))]
eigen_pairs.sort(key=lambda k: k[0], reverse=True) # (特征值,特征向量)降序排列

从上步骤可视化,选取第一二主成分作为最大特征向量进行构造投影矩阵。

w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis]))  # 降维投影矩阵W

13*2维矩阵如下:

这时,将原数据矩阵与投影矩阵相乘,转化为只有两个最大的特征主成分。

x_train_pca = x_train_std.dot(w)

5、数据分类结果

使用 matplotlib进行画图可视化,可见得,数据分布更多在x轴方向(第一主成分),这与之前方差占比解释一致,这时可以很直观区别3种不同类别。

代码实现:

color = ['r', 'g', 'b']
marker = ['s', 'x', 'o']
for l, c, m in zip(np.unique(y_train), color, marker):
plt.scatter(x_train_pca[y_train == l, 0],
x_train_pca[y_train == l, 1],
c=c, label=l, marker=m)
plt.title('Result')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.legend(loc='lower left')
plt.show()

本案例介绍PCA单个步骤和实现过程,一点很重要,PCA是无监督学习技术,它的分类没有使用到样本标签,上面之所以看出3类不同标签,是后来画图时候自行添加的类别区分标签。

6、完整代码

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt def main():
# load data
df_wine = pd.read_csv('D:\\PyCharm_Project\\maching_learning\\wine_data\\wine.data', header=None) # 本地加载
# df_wine=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data',header=None)#服务器加载 # split the data,train:test=7:3
x, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, stratify=y, random_state=0) # standardize the feature 标准化单位方差
sc = StandardScaler()
x_train_std = sc.fit_transform(x_train)
x_test_std = sc.fit_transform(x_test)
# print(x_train_std) # 构造协方差矩阵,得到特征向量和特征值
cov_matrix = np.cov(x_train_std.T)
eigen_val, eigen_vec = np.linalg.eig(cov_matrix)
# print("values\n ", eigen_val, "\nvector\n ", eigen_vec) # 解释方差比
tot = sum(eigen_val) # 总特征值和
var_exp = [(i / tot) for i in sorted(eigen_val, reverse=True)] # 计算解释方差比,降序
# print(var_exp)
# cum_var_exp = np.cumsum(var_exp) # 累加方差比率
# plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
# plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='独立解释方差') # 柱状 Individual_explained_variance
# plt.step(range(1, 14), cum_var_exp, where='mid', label='累加解释方差') # Cumulative_explained_variance
# plt.ylabel("解释方差率")
# plt.xlabel("主成分索引")
# plt.legend(loc='right')
# plt.show() # 特征变换
eigen_pairs = [(np.abs(eigen_val[i]), eigen_vec[:, i]) for i in range(len(eigen_val))]
eigen_pairs.sort(key=lambda k: k[0], reverse=True) # (特征值,特征向量)降序排列
# print(eigen_pairs)
w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) # 降维投影矩阵W
# print(w)
x_train_pca = x_train_std.dot(w)
# print(x_train_pca)
color = ['r', 'g', 'b']
marker = ['s', 'x', 'o']
for l, c, m in zip(np.unique(y_train), color, marker):
plt.scatter(x_train_pca[y_train == l, 0],
x_train_pca[y_train == l, 1],
c=c, label=l, marker=m)
plt.title('Result')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.legend(loc='lower left')
plt.show() if __name__ == '__main__':
main()

总结:

本案例介绍PCA步骤和实现过程,单步进行是我更理解PCA内部实行的过程,主成分分析PCA作为一种无监督数据压缩技术,学习之后更好掌握数据特征提取和降维的实现方法。记录学习过程,不仅能让自己更好的理解知识,而且能与大家共勉,希望我们都能有所帮助!

我的博客园:

我的CSDN:原创 PCA数据降维原理及python应用(葡萄酒案例分析)


版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。

最新文章

  1. sed命令详解
  2. Linux监控实战-2
  3. POJ 1830 开关问题 (高斯消元)
  4. HTML-001-日期组件 layDate 演示
  5. selenium+python登录登出百度,等待页面加载,鼠标定位
  6. 22----2013.06.29---HTML--html介绍.超链接和图片,表格,表单,表单标签,meta,复习当天内容
  7. LINUX启动ORACLE监听和服务
  8. 设计: ListView 接口,and the missing read-only interfaces in java collection framework
  9. 修饰器模式(day04)
  10. CreateFileMapping共享内存时添加Global的作用
  11. jq实现多选反选
  12. css边框动画
  13. Qt之自定义托盘
  14. 20175310 《Java程序设计》第7周学习总结
  15. 2013级计算机学院数字媒体专业李成梁(笛卡尔积,概率树状图)& 学生选课
  16. nodejs mysql 执行多条sql语句
  17. #001 HTML快速入门讲解
  18. 占位符golang
  19. Alpha 冲刺 —— 十分之六
  20. javascript小记-javascript运行机制

热门文章

  1. 从对象到类,Java中需要知道的这些东西
  2. Ethical Hacking - GAINING ACCESS(20)
  3. go : 连接数据库并插入数据
  4. 手把手带你玩转 DialogFragment
  5. git pull 放弃本地修改, 全部使用远端代码
  6. python学习之路------你想要的都在这里了
  7. sed 指定行范围匹配
  8. cookie 和session的简单比较
  9. Oracle DataGuard故障转移(failover)后使用RMAN还原失败的主库
  10. Day02_企业权限管理(SSM整合)