本篇内容是学习的记录,可能会有所不足。

一:JDK1.7中的HashMap

JDK1.7的hashMap是由数组 + 链表组成

/** 1 << 4,表示1,左移4位,变成10000,即16,以二进制形式运行,效率更高
* 默认的hashMap数组长度
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 /**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
* hashMap的最大容量
*/
static final int MAXIMUM_CAPACITY = 1 << 30; //1 073 741 824 /**
* The load factor used when none specified in constructor.
* 负载因子
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f; /**
* An empty table instance to share when the table is not inflated.
*/
static final Entry<?,?>[] EMPTY_TABLE = {}; /**
* The table, resized as necessary. Length MUST Always be a power of two.
* hashTable,根据需要调整大小。长度一定是2的幂。
*/
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE; /**
* The number of key-value mappings contained in this map.
* hashMap中元素的个数
*/
transient int size; /**
* The next size value at which to resize (capacity * load factor).
* @serial
*/
// If table == EMPTY_TABLE then this is the initial capacity at which the
// table will be created when inflated.
int threshold; /**
* The load factor for the hash table.
*
* @serial
*/
final float loadFactor; /**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the HashMap fail-fast. (See ConcurrentModificationException).
* 记录hashMap元素被修改的次数
*/
transient int modCount;

1:DEFAULT_INITIAL_CAPACITY,是hashMap默认的初始容量,它的大小一定是2的幂。

2:MAXIMUM_CAPACITY,hashMap支持的最大容量。

3:DEFAULT_LOAD_FACTOR,hashMap默认的负载因子,值为0.75,它决定hashMap数据的密度。

4:Entry<K,V>[] table,hashMap数组,可以根据自己的需要调整大小,长度一定是2的幂。

5:size,主要是记录hashMap中元素的数量。

6:threshold,调整hashMap后的值,即容量*负载因子。

7:loadFactor,可以调整的负载因子。

8:modCount,用来记录hashMap结构被修改的次数。

hashMap源码中有四个构造函数,初始化的时候可以知道容量和负载因子的大小。

 /**   做了两件事:1、为threshold、loadFactor赋值   2、调用init()
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY) //限制最大容量
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor)) //检查 loadFactor
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
//真正在做的,只是记录下loadFactor、initialCpacity的值
this.loadFactor = loadFactor; //记录下loadFactor
threshold = initialCapacity; //初始的 阈值threshold=initialCapacity=16
init();
} /**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
} /** 默认的初始化容量、默认的加载因子
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
public HashMap() { //16 0.75
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
} /**
* Constructs a new <tt>HashMap</tt> with the same mappings as the
* specified <tt>Map</tt>. The <tt>HashMap</tt> is created with
* default load factor (0.75) and an initial capacity sufficient to
* hold the mappings in the specified <tt>Map</tt>.
*
* @param m the map whose mappings are to be placed in this map
* @throws NullPointerException if the specified map is null
*/
public HashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
inflateTable(threshold); putAllForCreate(m);
}

接下来看下put方法:

public V put(K key, V value) {
if (Entry<K,V>[] table == EMPTY_TABLE) {
inflateTable(threshold); //初始化表 (初始化、扩容 合并为了一个方法)
}
if (key == null) //对key为null做特殊处理
return putForNullKey(value);
int hash = hash(key); //计算hash值
int i = indexFor(hash, table.length); //根据hash值计算出index下标
for (Entry<K,V> e = table[i]; e != null; e = e.next) { //遍历下标为i处的链表
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { //如果key值相同,覆盖旧值,返回新值
V oldValue = e.value;
e.value = value; //新值 覆盖 旧值
e.recordAccess(this); //do nothing
return oldValue; //返回旧值
}
} modCount++; //修改次数+1,类似于一个version number
addEntry(hash, key, value, i);
return null;
}

可以看到到table是空的时候,调用了一个方法:

private void inflateTable(int toSize) {
// Find a power of 2 >= toSize
int capacity = roundUpToPowerOf2(toSize);
//
threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity]; //初始化表
initHashSeedAsNeeded(capacity);
}

这个方法用来初始化table和table的扩容,roundUpToPowerOf2可以保证hashMap的容量一定是2的幂。

hashMap put元素时,会先根据hash运算计算出hash值,然后根据hash值和table的长度进行取模,计算出元素在table中的下标,如果key相同就覆盖原来的旧值,如果不相同就加入链表中。

    /**
* Returns index for hash code h.
* 计算元素在table中的下标位置
*/
static int indexFor(int h, int length) {
// assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
return h & (length-1);
} /**
* Adds a new entry with the specified key, value and hash code to
* the specified bucket. It is the responsibility of this
* method to resize the table if appropriate.
*
* Subclass overrides this to alter the behavior of put method.
*/
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) { //如果size大于threshold && table在下标为index的地方已经有entry了
resize(2 * table.length); //扩容,将数组长度变为原来两倍
hash = (null != key) ? hash(key) : 0; //重新计算 hash 值
bucketIndex = indexFor(hash, table.length); //重新计算下标
} createEntry(hash, key, value, bucketIndex); //创建entry
} /**
* Like addEntry except that this version is used when creating entries
* as part of Map construction or "pseudo-construction" (cloning,
* deserialization). This version needn't worry about resizing the table.
*
* Subclass overrides this to alter the behavior of HashMap(Map),
* clone, and readObject.
*/
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex]; //获取table中存的entry
table[bucketIndex] = new Entry<>(hash, key, value, e); //将新的entry放到数组中,next指向旧的table[i]
size++; //修改map中元素个数
}

当put的元素个数大于12时,即大于hashMap的容量*负载因子计算后的值,那么就会进行扩容,上述源代码可以看到扩容的条件, 除了大于12,还要看当前put进table所处的位置,是否为null,若是null,就不进行扩容,否则就扩容成原来容量的2倍,扩容后需要重新计算hash和计算下标,由于table的长度发生了变化,需要重新计算。

接下来看下get方法:

public V get(Object key) {
if (key == null)
return getForNullKey();
Entry<K,V> entry = getEntry(key); return null == entry ? null : entry.getValue();
} /**
* Returns the entry associated with the specified key in the
* HashMap. Returns null if the HashMap contains no mapping
* for the key.
*/
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
} int hash = (key == null) ? 0 : hash(key);
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}

get方法也是需要先计算hash然后计算下标,再去寻找元素。

二:JDK1.8中的HashMap

JDK1.8中的hashMap和1.7最大的区别就是引入了红黑树

/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
*/
transient Node<K,V>[] table; /**
* Holds cached entrySet(). Note that AbstractMap fields are used
* for keySet() and values().
*/
transient Set<Map.Entry<K,V>> entrySet; /**
* The number of key-value mappings contained in this map.
*/
transient int size; /**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the HashMap fail-fast. (See ConcurrentModificationException).
*/
transient int modCount; /**
* The next size value at which to resize (capacity * load factor).
*
* @serial
*/
// (The javadoc description is true upon serialization.
// Additionally, if the table array has not been allocated, this
// field holds the initial array capacity, or zero signifying
// DEFAULT_INITIAL_CAPACITY.)
int threshold; /**
* The load factor for the hash table.
*
* @serial
*/
final float loadFactor; /**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 /**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30; /**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f; /**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
*
*/
static final int TREEIFY_THRESHOLD = 8; /**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
*/
static final int UNTREEIFY_THRESHOLD = 6; /**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
*/
static final int MIN_TREEIFY_CAPACITY = 64; /**
* Basic hash bin node, used for most entries. (See below for
* TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
*/
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
} public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; } public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
} public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
} public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}

下面看下put方法:

 public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
} /**
* Implements Map.put and related methods. 添加元素
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0) //若table为null
n = (tab = resize()).length; //resize
if ((p = tab[i = (n - 1) & hash]) == null) //计算下标i,取出i处的元素为p,如果p为null
tab[i] = newNode(hash, key, value, null); //创建新的node,放到数组中
else { //若 p!=null
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k)))) //若key相同
e = p; //直接覆盖
else if (p instanceof TreeNode) //如果为 树节点
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); //放到树中
else { //如果key不相同,也不是treeNode
for (int binCount = 0; ; ++binCount) { //遍历i处的链表
if ((e = p.next) == null) { //找到尾部
p.next = newNode(hash, key, value, null); //在末尾添加一个node
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st //如果链表长度 >= 8
treeifyBin(tab, hash); //将链表转成共黑树
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) //若果key相同,直接退出循环
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

可以看到,上述源代码中,put的时候加入了红黑树,当put元素时,若链表的长度大于8,即源代码中的TREEIFY_THRESHOLD的值,这个时候链表就会转化为红黑树结构;当进行扩容的时候,红黑树转移后,若元素个数小于6,那么就会重新转化为链表。

三:JDK1.7中的ConcurrentHashMap

JDK1.7中的ConcurrentHashMap和JDK1.7中的HashMap的区别就是数组所存的元素,我们知道ConcurrentHashMap 是线程安全的。

public V put(K key, V value) {
Segment<K,V> s;
if (value == null)
throw new NullPointerException();
int hash = hash(key); // 计算Hash值
int j = (hash >>> segmentShift) & segmentMask; //计算下标j
if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
s = ensureSegment(j); //若j处有segment就返回,若没有就创建并返回
return s.put(key, hash, value, false); //将值put到segment中去
} final V put(K key, int hash, V value, boolean onlyIfAbsent) {
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value); //如果tryLock成功,就返回null,否则。。。
V oldValue;
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash; //根据table数组的长度 和 hash值计算index小标
HashEntry<K,V> first = entryAt(tab, index); //找到table数组在 index处链表的头部
for (HashEntry<K,V> e = first;;) { //从first开始遍历链表
if (e != null) { //若e!=null
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) { //如果key相同
oldValue = e.value; //获取旧值
if (!onlyIfAbsent) { //若absent=false
e.value = value; //覆盖旧值
++modCount; //
}
break; //若已经找到,就退出链表遍历
}
e = e.next; //若key不相同,继续遍历
}
else { //直到e为null
if (node != null) //将元素放到链表头部
node.setNext(first);
else
node = new HashEntry<K,V>(hash, key, value, first); //创建新的Entry
int c = count + 1; //count 用来记录元素个数
if (c > threshold && tab.length < MAXIMUM_CAPACITY) //如果hashmap元素个数超过threshold,并且table长度小于最大容量
rehash(node); //rehash跟resize的功能差不多,将table的长度变为原来的两倍,重新打包entries,并将给定的node添加到新的table
else //如果还有容量
setEntryAt(tab, index, node); //就在index处添加链表节点
++modCount; //修改操作数
count = c; //将count+1
oldValue = null; //
break;
}
}
} finally {
unlock(); //执行完操作后,释放锁
}
return oldValue; //返回oldValue
} private Segment<K,V> ensureSegment(int k) {
final Segment<K,V>[] ss = this.segments;
long u = (k << SSHIFT) + SBASE; // raw offset 获取下标k处的offset,
Segment<K,V> seg;
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { //如果下标k处没有元素
Segment<K,V> proto = ss[0]; // use segment 0 as prototype
int cap = proto.table.length; //根据proto 获得 cap参数
float lf = proto.loadFactor; //。。。
int threshold = (int)(cap * lf); //计算threshold
HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) { // recheck //如果下标k处仍然没有元素
Segment<K,V> s = new Segment<K,V>(lf, threshold, tab); //创建segment
while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) { //若下标k处仍然没有元素,自旋
if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s)) //若通过CAS更新成功,则退出
break;
}
}
}
return seg;
}

/** segments中每个元素都是一个专用的hashtable
* The segments, each of which is a specialized hash table.
*/
final Segment<K,V>[] segments;

可以看到1.7中的ConcurrentHashMap数组中所存的是segments,每个segments下都是一个hashTable。当put元素时,会加锁,然后计算hash和下标,计算下标会计算两次,一次是在数组中的segments的位置,一次是在hashTable的位置。

四:JDK1.8中的ConcurrentHashMap

JDK1.8中的ConcurrentHashMap和JDK1.8中的HashMap结构一样,只是在处理上有区别

public V put(K key, V value) {
return putVal(key, value, false);
} /** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode()); //计算hash值
int binCount = 0;
for (Node<K,V>[] tab = table;;) { //自旋
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0) //table==null || table.length==0
tab = initTable(); //就initTable
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { //若下标 i 处的元素为null
if (casTabAt(tab, i, null, //直接用CAS操作,i处的元素
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin 想emptybin中假如元素的时候,不需要加锁
}
else if ((fh = f.hash) == MOVED) //若下标 i 处的元素不为null,且f.hash==MOVED MOVED为常量值-1
tab = helpTransfer(tab, f); //
else { //如果是一般的节点
V oldVal = null;
synchronized (f) { //当头部元素不为null,且不需要转换成树时,需要进行同步操作
if (tabAt(tab, i) == f) {
if (fh >= 0) { //若 链表头部hash值 >=0
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) { //如果key相同
oldVal = e.val;
if (!onlyIfAbsent) //且不为absent
e.val = value; //旧值覆盖新值
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null), { //如果链表遍历完成,还没退出,说明没有相同的key存在,在尾部添加节点
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) { //如果f是Tree的节点
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}

当put元素时,会使用CAS操作,去判断数组中所要put到的位置元素是否为空,为空就修改为当前的put的元素,若CAS操作失败,那么会自旋,这个时候发现数组里已经有元素了,那么就会锁住链表或者红黑树头部,把元素放入链表或者红黑树下面 。

五:hash冲突

当put的时候需要计算hash和下标,这个时候计算出来的值可能存在一样的,那么存到数组中的相同位置,就会发生hash冲突,

计算出的hash值一样一定会发生hash冲突,但是hash值一样的概率很小,计算出的下标值是一样的概率很大,所以hash冲突主要是由下标位置一样引起的,hashMap的解决方式是使用链地址法,即使用链表的方式解决,key一样的时候才会覆盖,否则就把元素放到链表的下一个位置。

最新文章

  1. 【bzoj1725】[USACO2006 Nov]Corn Fields牧场的安排
  2. [转载]GlassFish 的安装及设置命令
  3. node.js 简介
  4. 3.1 SharePreference
  5. Jfinal基础学习(一)
  6. python主要用来做什么
  7. wordpress学习-themes-001
  8. C扩展 C++回顾到入门
  9. UVALive 4222 Dance 模拟题
  10. Task &#39;&#39; not found in root project &#39;***&#39;.
  11. Unity3D编程回忆录,Unity3d视频教程,教父团队倾情之作
  12. MYSQL数据库根据data文件中的.frm和ibd文件恢复单表数据
  13. [转]Web UI 设计命名规范
  14. jquery $.each() 小探
  15. html5 js控制音乐播放
  16. 使用JS控制伪元素的几种方法
  17. tp5框架的获取器
  18. Animations and transitions
  19. echo与print,var_dump()和print_r()的区别
  20. Apache配置对外访问默认路径(域名默认访问路径)

热门文章

  1. 1102 Invert a Binary Tree——PAT甲级真题
  2. 【SpringMVC】 4.3 拦截器
  3. alpine jdk 中文乱码
  4. MVCC多版本并发控制器
  5. vs2019远程调试
  6. 翻译:《实用的Python编程》03_05_Main_module
  7. DLL劫持学习及复现
  8. 测试工程师Docker进阶
  9. Apache配置 4.访问日志
  10. validator库参数校验