• 背景介绍

    Neural Network之模型复杂度主要取决于优化参数个数与参数变化范围. 优化参数个数可手动调节, 参数变化范围可通过正则化技术加以限制. 本文从优化参数个数出发, 以Residual Block技术为例, 简要演示Residual Block残差块对Neural Network模型复杂度的影响.

  • 算法特征

    ①. 对输入进行等维度变换; ②. 以加法连接前后变换扩大函数空间

  • 算法推导

    典型残差块结构如下,

    即, 输入\(x\)之函数空间通过加法\(x + f(x)\)扩大. 可以看到, 在前向计算过程中, 函数\(f(x)\)之作用类似于残差, 补充输入\(x\)对标准输出描述之不足; 同时, 在反向传播过程中, 对输入\(x\)之梯度计算分裂在不同影响链路上, 降低了函数\(f(x)\)对梯度的直接影响.

  • 数据、模型与损失函数

    数据生成策略如下,

    \[\left\{
    \begin{align*}
    x &= r + 2g + 3b \\
    y &= r^2 + 2g^2 + 3b^2 \\
    lv &= -3r - 4g - 5b
    \end{align*}
    \right.
    \]

    Neural Network网络模型如下,

    其中, 输入层\(x:=(r, g, b)\), 输出层\(y:=(x, y, lv)\), 中间所有隐藏层与输入之dimension保持一致.

    损失函数如下,

    \[L = \sum_{i}\frac{1}{2}(\bar{x}^{(i)} - x^{(i)})^2 + \frac{1}{2}(\bar{y}^{(i)} - y^{(i)})^2 + \frac{1}{2}(\bar{lv}^{(i)} - lv^{(i)})^2
    \]

    其中, \(i\)为data序号, \((\bar{x}, \bar{y}, \bar{lv})\)为相应观测值.

  • 代码实现

    本文以是否采用Residual Block为例(即在上述模型中是否去除\(\oplus\)), 观察Residual Block对模型复杂度的影响.

    code
    import numpy
    import torch
    from torch import nn
    from torch import optim
    from torch.utils import data
    from matplotlib import pyplot as plt numpy.random.seed(0) # 获取数据与封装数据
    def xFunc(r, g, b):
    x = r + 2 * g + 3 * b
    return x def yFunc(r, g, b):
    y = r ** 2 + 2 * g ** 2 + 3 * b ** 2
    return y def lvFunc(r, g, b):
    lv = -3 * r - 4 * g - 5 * b
    return lv class GeneDataset(data.Dataset): def __init__(self, rRange=[-1, 1], gRange=[-1, 1], bRange=[-1, 1], \
    num=100, transform=None, target_transform=None):
    self.__rRange = rRange
    self.__gRange = gRange
    self.__bRange = bRange
    self.__num = num
    self.__transform = transform
    self.__target_transform = target_transform self.__X = self.__build_X()
    self.__Y_ = self.__build_Y_() def __build_Y_(self):
    rArr = self.__X[:, 0:1]
    gArr = self.__X[:, 1:2]
    bArr = self.__X[:, 2:3]
    xArr = xFunc(rArr, gArr, bArr)
    yArr = yFunc(rArr, gArr, bArr)
    lvArr = lvFunc(rArr, gArr, bArr)
    Y_ = numpy.hstack((xArr, yArr, lvArr))
    return Y_ def __build_X(self):
    rArr = numpy.random.uniform(*self.__rRange, (self.__num, 1))
    gArr = numpy.random.uniform(*self.__gRange, (self.__num, 1))
    bArr = numpy.random.uniform(*self.__bRange, (self.__num, 1))
    X = numpy.hstack((rArr, gArr, bArr))
    return X def __len__(self):
    return self.__num def __getitem__(self, idx):
    x = self.__X[idx]
    y_ = self.__Y_[idx]
    if self.__transform:
    x = self.__transform(x)
    if self.__target_transform:
    y_ = self.__target_transform(y_)
    return x, y_ # 构建模型
    class Model(nn.Module): def __init__(self, is_residual_block=True):
    super(Model, self).__init__()
    torch.random.manual_seed(0) self.__is_residual_block = is_residual_block
    self.__in_features = 3
    self.__out_features = 3 self.lin11 = nn.Linear(3, 3, dtype=torch.float64)
    self.lin12 = nn.Linear(3, 3, dtype=torch.float64)
    self.lin21 = nn.Linear(3, 3, dtype=torch.float64)
    self.lin22 = nn.Linear(3, 3, dtype=torch.float64)
    self.lin31 = nn.Linear(3, 3, dtype=torch.float64)
    self.lin32 = nn.Linear(3, 3, dtype=torch.float64) def forward(self, X):
    X1 = self.lin12(torch.tanh(self.lin11(X)))
    if self.__is_residual_block:
    X1 += X
    X1 = torch.tanh(X1) X2 = self.lin22(torch.tanh(self.lin21(X1)))
    if self.__is_residual_block:
    X2 += X1
    X2 = torch.tanh(X2) X3 = self.lin32(torch.tanh(self.lin31(X2)))
    if self.__is_residual_block:
    X3 += X2
    return X3 # 构建损失函数
    class MSE(nn.Module): def forward(self, Y, Y_):
    loss = torch.sum((Y - Y_) ** 2)
    return loss # 训练单元与测试单元
    def train_epoch(trainLoader, model, loss_fn, optimizer):
    model.train(True) loss = 0
    with torch.enable_grad():
    for X, Y_ in trainLoader:
    optimizer.zero_grad() Y = model(X)
    lossVal = loss_fn(Y, Y_)
    lossVal.backward()
    optimizer.step() loss += lossVal.item() loss /= len(trainLoader.dataset)
    return loss def test_epoch(testLoader, model, loss_fn, optimzier):
    model.train(False) loss = 0
    with torch.no_grad():
    for X, Y_ in testLoader:
    Y = model(X)
    lossVal = loss_fn(Y, Y_)
    loss += lossVal.item()
    loss /= len(testLoader.dataset)
    return loss def train_model(trainLoader, testLoader, epochs=100):
    model_RB = Model(True)
    loss_RB = MSE()
    optimizer_RB = optim.Adam(model_RB.parameters(), 0.001) model_No = Model(False)
    loss_No = MSE()
    optimizer_No = optim.Adam(model_No.parameters(), 0.001) trainLoss_RBList = list()
    testLoss_RBList = list()
    trainLoss_NoList = list()
    testLoss_NoList = list()
    for epoch in range(epochs):
    trainLoss_RB = train_epoch(trainLoader, model_RB, loss_RB, optimizer_RB)
    testLoss_RB = test_epoch(testLoader, model_RB, loss_RB, optimizer_RB)
    trainLoss_No = train_epoch(trainLoader, model_No, loss_No, optimizer_No)
    testLoss_No = test_epoch(testLoader, model_No, loss_No, optimizer_No) trainLoss_RBList.append(trainLoss_RB)
    testLoss_RBList.append(testLoss_RB)
    trainLoss_NoList.append(trainLoss_No)
    testLoss_NoList.append(testLoss_No)
    if epoch % 50 == 0:
    print(epoch, trainLoss_RB, trainLoss_No, testLoss_RB, testLoss_No) fig = plt.figure(figsize=(5, 4))
    ax1 = fig.add_subplot(1, 1, 1)
    X = numpy.arange(1, epochs+1)
    ax1.plot(X, trainLoss_RBList, "r-", lw=1, label="train with RB")
    ax1.plot(X, testLoss_RBList, "r--", lw=1, label="test with RB")
    ax1.plot(X, trainLoss_NoList, "b-", lw=1, label="train without RB")
    ax1.plot(X, testLoss_NoList, "b--", lw=1, label="test without RB")
    ax1.set(xlabel="epoch", ylabel="loss", yscale="log")
    ax1.legend()
    fig.tight_layout()
    fig.savefig("loss.png", dpi=300)
    plt.show() if __name__ == "__main__":
    trainData = GeneDataset([-1, 1], [-1, 1], [-1, 1], num=1000, \
    transform=torch.tensor, target_transform=torch.tensor)
    testData = GeneDataset([-1, 1], [-1, 1], [-1, 1], num=300, \
    transform=torch.tensor, target_transform=torch.tensor)
    trainLoader = data.DataLoader(trainData, batch_size=len(trainData), shuffle=False)
    testLoader = data.DataLoader(testData, batch_size=len(testData), shuffle=False)
    epochs = 10000
    train_model(trainLoader, testLoader, epochs)
  • 结果展示

    可以看到, 由于Residual Block结构引入额外的优化参数, 模型复杂度得以提升. 同时, 相较于常规Neural Network(对应去除Residual Block之\(\oplus\)), Residual Block之Neural Network在优化参数个数相同的前提下更加稳妥地扩大了函数空间.

  • 使用建议

    ①. 残差函数之设计应当具备与目标输出匹配之能力;

    ②. 残差函数之设计可改变dimension, 此时\(\oplus\)侧之输入应当进行线性等维调整;

    ③. 若训练数据之复杂度高于测试数据, 则在训练起始, 训练数据之loss可能也要高于测试数据.

  • 参考文档

    ①. 动手学深度学习 - 李牧

最新文章

  1. 了解HTML图像
  2. Java字节、十进制、十六进制、字符串之间的相互转换
  3. 如何撰写PRD
  4. [转]阎宏博士的JAVA与模式
  5. [实践] ubuntu下编译安装ambari
  6. 一起来写2048(160行python代码)
  7. js面向对象的五种写法
  8. Vijos1051. 送给圣诞夜的极光
  9. rownum(转载)
  10. 在SSIS包中使用 Checkpoint从失败处重新启动包
  11. IP包头
  12. IDL 实现求算 DEM 坡度坡向
  13. switch条件语句规则
  14. mac 下 wget 安装
  15. EmptyBeanUtil
  16. sql语句order by排序问题
  17. Django框架(三)
  18. .net 表达式返回值和等号赋值的区别
  19. 算法图解 (Aditya Bhargava 著)
  20. 【刷题】BZOJ 2194 快速傅立叶之二

热门文章

  1. ColorFolder文件管理工具使用教程
  2. C++梳理
  3. C4模型,架构设计图的脚手架,你值得拥有
  4. 大规模 IoT 边缘容器集群管理的几种架构-4-Kubeedge
  5. GoAccess实现请求监
  6. PostGIS之地理坐标
  7. 使用Shapefile C Library读取shp文件并使用OpenGL绘制
  8. Angular ngx-translate中英文切换
  9. HDFS存储流程及HA
  10. WebForm发布IIS后,报错无谓词错误