正题

题目链接:https://www.luogu.com.cn/problem/P5825


题目大意

对于每个\(k\),求有多少个长度为\(n\)的排列有\(k\)个位置上升。

\(1\leq n\leq 2\times 10^5\)


解题思路

考虑到同时考虑大于和小于十分麻烦,设\(f_i\)表示钦定\(i\)个上升时的方案

连续的上升段可以视为同一个组,那么整个序列就会被分为\(m=n-k\)段,每个组内都是无序的。

所以可以考虑一下\(\text{EGF}\)来做,因为不能选空段,那么每一段的生成函数就是\(e^x-1\)。

也就是\(f_{n-m}=(e^x-1)^m[x^n]\)。二项式定理展开一下

\[f_m=\sum_{i=0}^m\binom{m}{i}(-1)^{m-i}e^{ix}
\]
\[=\sum_{i=0}^m\frac{m!}{i!(m-i)!}(-1)^{m-i}\frac{i^n}{n!}
\]
\[=\frac{m!}{n!}\sum_{i=0}^m\frac{(-1)^{m-i}}{(m-i)!}\frac{i^n}{i!}
\]

\(\text{NTT}\)卷起来就好了。

然后\(g_i\)表示恰好有\(i\)个的话,上二项式反演即可

\[f_i=\sum_{j=0}^i\binom{i}{j}g_j\Rightarrow g_i=\sum_{j=i}(-1)^{j-i}\binom{j}{i}f_j
\]

这个也是显然可以卷积快速求得的。

顺带一提的是,这个求得其实就是欧拉数\(\left\langle\begin{matrix} n\\k\end{matrix}\right\rangle\)

联立上面的\(f_i\)和\(g_i\)的式子可以得到欧拉数的通式

\[\left\langle\begin{matrix} n\\k\end{matrix}\right\rangle=\sum_{i=0}^{n-k}(-1)^{n-k-i}i^n\binom{n+1}{k+j+1}
\]

这个可以一次卷积求得

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=8e5+10,P=998244353;
ll n,m,inv[N],fac[N],f[N],g[N],r[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void NTT(ll *f,ll op){
for(ll i=0;i<m;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(ll p=2;p<=m;p<<=1){
ll tmp=power(3,(P-1)/p),len=(p>>1);
if(op==-1)tmp=power(tmp,P-2);
for(ll k=0;k<m;k+=p){
ll buf=1;
for(ll i=k;i<k+len;i++){
ll tt=f[i+len]*buf%P;
f[i+len]=(f[i]-tt+P)%P;
f[i]=(f[i]+tt)%P;
buf=buf*tmp%P;
}
}
}
if(op==-1){
ll invn=power(m,P-2);
for(ll i=0;i<m;i++)
f[i]=f[i]*invn%P;
}
return;
}
signed main()
{
scanf("%lld",&n);
inv[1]=1;
for(ll i=2;i<=n;i++)
inv[i]=P-inv[P%i]*(P/i)%P;
inv[0]=fac[0]=1;
for(ll i=1;i<=n;i++)
inv[i]=inv[i-1]*inv[i]%P,fac[i]=fac[i-1]*i%P;
for(ll i=0;i<=n;i++)
f[i]=inv[i]*power(i,n)%P,g[i]=(i&1)?(P-inv[i]):inv[i];
m=1;while(m<=2*n)m<<=1;
for(ll i=0;i<m;i++)
r[i]=(r[i>>1]>>1)|((i&1)?(m>>1):0);
NTT(f,1);NTT(g,1);
for(ll i=0;i<m;i++)f[i]=f[i]*g[i]%P;
NTT(f,-1);
memset(g,0,sizeof(g));
for(ll i=0;i<m;i++)
f[i]=(i<n)?(f[i+1]*fac[i+1]%P):0;
for(ll i=n;i<m;i++)f[i]=0;
for(ll i=0;i<n;i++){
f[i]=f[i]*fac[n-i-1];
f[i]=(i&1)?(P-f[i]):f[i];
g[i]=inv[i];
}
NTT(f,1);NTT(g,1);
for(ll i=0;i<m;i++)f[i]=f[i]*g[i]%P;
NTT(f,-1);
for(ll i=0;i<n-i-1;i++)swap(f[i],f[n-i-1]);
for(ll i=0;i<n;i++){
f[i]=f[i]*inv[i]%P;
f[i]=((n-i)&1)?f[i]:(P-f[i]);
printf("%lld ",f[i]%P);
}
putchar('0');
return 0;
}

最新文章

  1. 了解 ARDUINO 101* 平台
  2. Visual Studio原生开发的20条调试技巧(下)
  3. Unity3D游戏引擎最详尽基础教程
  4. NOIP2014提高组 DAY1 -SilverN
  5. Excel的 OleDb 连接串的格式
  6. MSDN无法显示该页的解决办法
  7. JavaScript DOM编程艺术第二版学习(1/4)
  8. h5 canvas
  9. CI的扩展机制
  10. js在以div添加滚动条
  11. 用Markdown来写作
  12. 九天学会Java,第五天,函数定义函数调用
  13. 【Aladdin Unity3D Shader编程】之三 光照模型(二)
  14. OpenLayer3调用天地图,拖拽后,地图消失的问题[已解决]
  15. C#中的 隐式与显式接口实现
  16. Hadoop面试题
  17. hadoop常用命令详细解释
  18. dedecms站内搜索页面调用最新文章
  19. mybatis 调用 oracle 存储过程 select into 无记录时NO_DATA_FOUND异常处理分析
  20. C166 8位字节位运算赋值-代码优化

热门文章

  1. Anaconda安装和使用
  2. .NET WebApi 实战第五讲之EntityFramework事务
  3. leaflet antvPath示例
  4. SpringBoot快速搭建流程
  5. Javascript - Vue - 路由
  6. Android中Context解析
  7. Struts2常见问题
  8. Focal Loss(RetinaNet)笔记 一种减小类别不平衡影响的方法
  9. MySQL-存储引擎-MERGE
  10. linux centos7 read 命令