对于分割网络,如果当成一个黑箱就是:输入一个3x1024x1024 输出4x1024x1024。

我没有使用二分类,直接使用了四分类。

分类网络使用了SegNet,没有加载预训练模型,参数也是默认初始化。为了加快训练,1024输入进网络后直接通过

pooling缩小到256的尺寸,等到输出层,直接使用bilinear放大4倍,相当于直接在256的尺寸上训练。

import os
import urllib
import torch
import torch.nn as nn
import torch.nn.functional as F #import torch.utils.model_zoo as model_zoo
from torchvision import models
#https://raw.githubusercontent.com/delta-onera/delta_tb/master/deltatb/networks/net_segnet_bn_relu.py
class SegNet_BN_ReLU(nn.Module):
# Unet network
@staticmethod
def weight_init(m):
if isinstance(m, nn.Linear):
torch.nn.init.kaiming_normal(m.weight.data) def __init__(self, in_channels, out_channels):
super(SegNet_BN_ReLU, self).__init__() self.in_channels = in_channels
self.out_channels = out_channels self.pool = nn.MaxPool2d(2, return_indices=True)
self.unpool = nn.MaxUnpool2d(2) self.conv1_1 = nn.Conv2d(in_channels, 64, 3, padding=1)
self.conv1_1_bn = nn.BatchNorm2d(64)
self.conv1_2 = nn.Conv2d(64, 64, 3, padding=1)
self.conv1_2_bn = nn.BatchNorm2d(64) self.conv2_1 = nn.Conv2d(64, 128, 3, padding=1)
self.conv2_1_bn = nn.BatchNorm2d(128)
self.conv2_2 = nn.Conv2d(128, 128, 3, padding=1)
self.conv2_2_bn = nn.BatchNorm2d(128) self.conv3_1 = nn.Conv2d(128, 256, 3, padding=1)
self.conv3_1_bn = nn.BatchNorm2d(256)
self.conv3_2 = nn.Conv2d(256, 256, 3, padding=1)
self.conv3_2_bn = nn.BatchNorm2d(256)
self.conv3_3 = nn.Conv2d(256, 256, 3, padding=1)
self.conv3_3_bn = nn.BatchNorm2d(256) self.conv4_1 = nn.Conv2d(256, 512, 3, padding=1)
self.conv4_1_bn = nn.BatchNorm2d(512)
self.conv4_2 = nn.Conv2d(512, 512, 3, padding=1)
self.conv4_2_bn = nn.BatchNorm2d(512)
self.conv4_3 = nn.Conv2d(512, 512, 3, padding=1)
self.conv4_3_bn = nn.BatchNorm2d(512) self.conv5_1 = nn.Conv2d(512, 512, 3, padding=1)
self.conv5_1_bn = nn.BatchNorm2d(512)
self.conv5_2 = nn.Conv2d(512, 512, 3, padding=1)
self.conv5_2_bn = nn.BatchNorm2d(512)
self.conv5_3 = nn.Conv2d(512, 512, 3, padding=1)
self.conv5_3_bn = nn.BatchNorm2d(512) self.conv5_3_D = nn.Conv2d(512, 512, 3, padding=1)
self.conv5_3_D_bn = nn.BatchNorm2d(512)
self.conv5_2_D = nn.Conv2d(512, 512, 3, padding=1)
self.conv5_2_D_bn = nn.BatchNorm2d(512)
self.conv5_1_D = nn.Conv2d(512, 512, 3, padding=1)
self.conv5_1_D_bn = nn.BatchNorm2d(512) self.conv4_3_D = nn.Conv2d(512, 512, 3, padding=1)
self.conv4_3_D_bn = nn.BatchNorm2d(512)
self.conv4_2_D = nn.Conv2d(512, 512, 3, padding=1)
self.conv4_2_D_bn = nn.BatchNorm2d(512)
self.conv4_1_D = nn.Conv2d(512, 256, 3, padding=1)
self.conv4_1_D_bn = nn.BatchNorm2d(256) self.conv3_3_D = nn.Conv2d(256, 256, 3, padding=1)
self.conv3_3_D_bn = nn.BatchNorm2d(256)
self.conv3_2_D = nn.Conv2d(256, 256, 3, padding=1)
self.conv3_2_D_bn = nn.BatchNorm2d(256)
self.conv3_1_D = nn.Conv2d(256, 128, 3, padding=1)
self.conv3_1_D_bn = nn.BatchNorm2d(128) self.conv2_2_D = nn.Conv2d(128, 128, 3, padding=1)
self.conv2_2_D_bn = nn.BatchNorm2d(128)
self.conv2_1_D = nn.Conv2d(128, 64, 3, padding=1)
self.conv2_1_D_bn = nn.BatchNorm2d(64) self.conv1_2_D = nn.Conv2d(64, 64, 3, padding=1)
self.conv1_2_D_bn = nn.BatchNorm2d(64)
self.conv1_1_D = nn.Conv2d(64, out_channels, 3, padding=1) self.apply(self.weight_init) def forward(self, x):
# Encoder block 1
x =F.avg_pool2d(x,4)
#print(x.shape)
x = self.conv1_1_bn(F.relu(self.conv1_1(x)))
x1 = self.conv1_2_bn(F.relu(self.conv1_2(x)))
size1 = x.size()
x, mask1 = self.pool(x1) # Encoder block 2
x = self.conv2_1_bn(F.relu(self.conv2_1(x)))
#x = self.drop2_1(x)
x2 = self.conv2_2_bn(F.relu(self.conv2_2(x)))
size2 = x.size()
x, mask2 = self.pool(x2) # Encoder block 3
x = self.conv3_1_bn(F.relu(self.conv3_1(x)))
x = self.conv3_2_bn(F.relu(self.conv3_2(x)))
x3 = self.conv3_3_bn(F.relu(self.conv3_3(x)))
size3 = x.size()
x, mask3 = self.pool(x3) # Encoder block 4
x = self.conv4_1_bn(F.relu(self.conv4_1(x)))
x = self.conv4_2_bn(F.relu(self.conv4_2(x)))
x4 = self.conv4_3_bn(F.relu(self.conv4_3(x)))
size4 = x.size()
x, mask4 = self.pool(x4) # Encoder block 5
x = self.conv5_1_bn(F.relu(self.conv5_1(x)))
x = self.conv5_2_bn(F.relu(self.conv5_2(x)))
x = self.conv5_3_bn(F.relu(self.conv5_3(x)))
size5 = x.size()
x, mask5 = self.pool(x) # Decoder block 5
x = self.unpool(x, mask5, output_size = size5)
x = self.conv5_3_D_bn(F.relu(self.conv5_3_D(x)))
x = self.conv5_2_D_bn(F.relu(self.conv5_2_D(x)))
x = self.conv5_1_D_bn(F.relu(self.conv5_1_D(x))) # Decoder block 4
x = self.unpool(x, mask4, output_size = size4)
x = self.conv4_3_D_bn(F.relu(self.conv4_3_D(x)))
x = self.conv4_2_D_bn(F.relu(self.conv4_2_D(x)))
x = self.conv4_1_D_bn(F.relu(self.conv4_1_D(x))) # Decoder block 3
x = self.unpool(x, mask3, output_size = size3)
x = self.conv3_3_D_bn(F.relu(self.conv3_3_D(x)))
x = self.conv3_2_D_bn(F.relu(self.conv3_2_D(x)))
x = self.conv3_1_D_bn(F.relu(self.conv3_1_D(x))) # Decoder block 2
x = self.unpool(x, mask2, output_size = size2)
x = self.conv2_2_D_bn(F.relu(self.conv2_2_D(x)))
x = self.conv2_1_D_bn(F.relu(self.conv2_1_D(x))) # Decoder block 1
x = self.unpool(x, mask1, output_size = size1)
x = self.conv1_2_D_bn(F.relu(self.conv1_2_D(x)))
x = self.conv1_1_D(x)
#print(x.shape)
return F.interpolate(x,mode='bilinear',scale_factor=4) def load_pretrained_weights(self): #vgg16_weights = model_zoo.load_url("https://download.pytorch.org/models/vgg16_bn-6c64b313.pth")
vgg16_weights=models.vgg16_bn(True).state_dict()
count_vgg = 0
count_this = 0 vggkeys = list(vgg16_weights.keys())
thiskeys = list(self.state_dict().keys()) corresp_map = [] while(True):
vggkey = vggkeys[count_vgg]
thiskey = thiskeys[count_this] if "classifier" in vggkey:
break while vggkey.split(".")[-1] not in thiskey:
count_this += 1
thiskey = thiskeys[count_this] corresp_map.append([vggkey, thiskey])
count_vgg+=1
count_this += 1 mapped_weights = self.state_dict()
for k_vgg, k_segnet in corresp_map:
if (self.in_channels != 3) and "features" in k_vgg and "conv1_1." not in k_segnet:
mapped_weights[k_segnet] = vgg16_weights[k_vgg]
elif (self.in_channels == 3) and "features" in k_vgg:
mapped_weights[k_segnet] = vgg16_weights[k_vgg] try:
self.load_state_dict(mapped_weights)
print("Loaded VGG-16 weights in Segnet !")
except:
print("Error VGG-16 weights in Segnet !")
raise def load_from_filename(self, model_path):
"""Load weights from filename."""
th = torch.load(model_path) # load the weigths
self.load_state_dict(th) def segnet_bn_relu(in_channels, out_channels, pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = SegNet_BN_ReLU(in_channels, out_channels)
if pretrained:
model.load_pretrained_weights()
return model if __name__=='__main__':
net=segnet_bn_relu(3,4,False)
print(net)
x=torch.rand((1,3,1024,1024))
print(net.forward(x).shape)

  训练网络的代码:

import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from farmdataset import FarmDataset from segnet import segnet_bn_relu as Unet import time from PIL import Image def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
#print(target.shape)
optimizer.zero_grad()
output = model(data)
#print('output size',output.size(),output) output = F.log_softmax(output, dim=1)
loss=nn.NLLLoss2d(weight=torch.Tensor([0.1,0.5,0.5,0.2]).to('cuda'))(output,target)
loss.backward() optimizer.step() #time.sleep(0.6)#make gpu sleep
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if epoch%2==0:
imgd=output.detach()[0,:,:,:].cpu()
img=torch.argmax(imgd,0).byte().numpy()
imgx=Image.fromarray(img).convert('L')
imgxx=Image.fromarray(target.detach()[0,:,:].cpu().byte().numpy()*255).convert('L')
imgx.save("./tmp/predict{}.bmp".format(epoch))
imgxx.save('./tmp/real{}.bmp'.format(epoch)) def test(args, model, device, testdataset,issave=False):
model.eval()
test_loss = 0
correct = 0
evalid=[i+7 for i in range(0,2100,15)]
maxbatch=len(evalid)
with torch.no_grad():
for idx in evalid:
data, target=testdataset[idx]
data, target = data.unsqueeze(0).to(device), target.unsqueeze(0).to(device)
#print(target.shape)
target=target[:,:1472,:1472]
output = model(data[:,:,:1472,:1472])
output = F.log_softmax(output, dim=1)
loss=nn.NLLLoss2d().to('cuda')(output,target)
test_loss+=loss r=torch.argmax(output[0],0).byte() tg=target.byte().squeeze(0)
tmp=0
count=0
for i in range(1,4):
mp=r==i
tr=tg==i
tp=mp*tr==1
t=(mp+tr-tp).sum().item()
if t==0:
continue
else:
tmp+=tp.sum().item()/t
count+=1
if count>0:
correct+=tmp/count if issave:
Image.fromarray(r.cpu().numpy()).save('predict.png')
Image.fromarray(tg.cpu().numpy()).save('target.png')
input() print('Test Loss is {:.6f}, mean precision is: {:.4f}%'.format(test_loss/maxbatch,correct)) def main():
# Training settings
parser = argparse.ArgumentParser(description='Scratch segmentation Example')
parser.add_argument('--batch-size', type=int, default=8, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=8, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=30, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu")
print('my device is :',device) kwargs = {'num_workers': 0, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader( FarmDataset(istrain=True),batch_size=args.batch_size, shuffle=True,drop_last=True, **kwargs) startepoch=0
model =torch.load('./tmp/model{}'.format(startepoch)) if startepoch else Unet(3,4).to(device)
args.epochs=50
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) for epoch in range(startepoch, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
if epoch %3==0:
print(epoch)
test(args, model, device, FarmDataset(istrain=True,isaug=False),issave=False)
torch.save(model,'./tmp/model{}'.format(epoch)) if __name__ == '__main__':
main()

  训练代码每隔三轮,评测一次训练精度,测试数据仍然使用训练数据,只是抽样了。可以根据该精度选择使用什么时刻的网络作为预测节点。

训练精度可以达到0.4,但是这时候貌似过学习了。提交结果并不好。

到现在感觉,只要改进一点,分数就会高一点。如果要继续提高成绩,感觉可以从以下几个方面改进:

样本的不均衡

损失函数

模型结构的设计 可以参考PSP,UNET,deeplab,或者GAN的pix2pix。

总之,感觉只要进行一点改进,功夫就不会白费。

整个从数据切割,数据集准备,数据增强,预测结果保存,深度分割网络 和网络训练,全部代码到此分享完毕,

做完这些你的结果就能到0.2以上。 也是折腾了好几天才到现在,希望这能成为一个基线,看到更精彩的模型思路。

(完)

最新文章

  1. 记录rewrite url我之前不知道的地方
  2. 为什么更喜欢Outlook,而不是Gmail
  3. .htacess的url重写(支持伪静态)
  4. 使用HttpClient获取网上字符串和位图对象Bitmap
  5. java.util.Scanner简单应用
  6. C#调用c++Dll 结构体数组指针的问题
  7. RHEL 集群(RHCS)配置小记 -- 文档记录
  8. 在Android中查看和管理sqlite数据库
  9. js compress and combine
  10. How Many Fibs?
  11. VB6之HOOK技术
  12. 洛谷P2664 树上游戏(点分治)
  13. C/C++控制台接收不到鼠标消息-【解决办法】
  14. 记录Newtonsoft.Json的日常用法
  15. 初识 Nginx
  16. JAVA版开源微信管家—JeeWx捷微3.1小程序版本发布,支持微信公众号,微信企业号,支付窗
  17. 利用在线HTTP接口测试工具ApiPost,模拟移动端请求API接口
  18. [na]ip数据包格式
  19. [转]关于几本模拟IC设计书
  20. windows任务管理器所查的网站

热门文章

  1. java 工程idea 添加依赖几种方式:
  2. 150元搭建微型家庭服务器(支持DLAN,samda,aria2)
  3. CN109241772A发票区块链记录方法、装置、区块链网关服务器和介质(腾讯)
  4. 关于vscode的配置
  5. 在tomcat启动时解析xml文件,获取特定标签的属性值,并将属性值设置到静态变量里
  6. 二分(求l-r中的平方数)
  7. Update(Stage4):sparksql:第3节 Dataset (DataFrame) 的基础操作 & 第4节 SparkSQL_聚合操作_连接操作
  8. CSS背景图片设置
  9. SyntaxError: (unicode error) 'utf-8' codec can't decode byte 0xd0 in position 2: invalid continuation byte
  10. IDEA 查看某个class的maven引用依赖&如何展示Diagram Elements