题目

求 $\displaystyle \sum_{i=1}^n F_i^k$,($1 \leq n\leq 10^{18},1 \leq  k\leq 10^5$),答案对 $10^9+9$ 取模。

分析

将通项公式 $fib_i = \frac{1}{\sqrt{5}} ((\frac{1 + \sqrt{5}}{2})^i - (\frac{1 - \sqrt{5}}{2})^i)$ 代入,可以得到

$$\begin{align*} S & = (\frac{1}{\sqrt{5}})^k \sum\limits_{i=1}^n ((\frac{1 + \sqrt{5}}{2})^i - (\frac{1 - \sqrt{5}}{2}) ^ i)^k \\ & = (\frac{1}{\sqrt{5}})^k \sum\limits_{i=1}^n \sum\limits_{j=0}^k (-1)^{k-j} \binom{k}{j}(\frac{1 + \sqrt{5}}{2})^{ij} (\frac{1 - \sqrt{5}}{2})^{i(k-j)} \\ &= (\frac{1}{\sqrt{5}})^k \sum\limits_{j=0}^k (-1)^{k-j} \binom{k}{j} \sum\limits_{i=1}^n [(\frac{1 + \sqrt{5}}{2})^{j} (\frac{1 - \sqrt{5}}{2})^{k-j}]^i \\ &= (\frac{1}{\sqrt{5}})^k \sum\limits_{j=0}^k (-1)^{k-j} \binom{k}{j} (\frac{t^{n+1} - t}{t-1})
\end{align*}$$

因为 $x^2 \equiv 5(mod \ p)$,最终结果不含 $\sqrt 5$, 肯定是被平方了,所以可以用 $x$ 代替 $\sqrt 5$。

因为5在模 $10^9+9$意义下有二次剩余,所以 $\sqrt 5$ 有实际意义,那么我们可以从小到大枚举 $j$,后面那一部分是等比数列求和,注意特判公比为1.

如果5在某些模数下没有二次剩余,因为 $a \sqrt 5 + b% 在上述需要的运算(加、减、乘、除和幂)中是封闭的,所有我们可以用 $pair(a, b)$ 表示 $a \sqrt 5 + b$,并进行运算。

#include<bits/stdc++.h>
using namespace std; #define int long long
inline int read(){
int a = ;
char c = getchar();
bool f = ;
while(!isdigit(c) && c != EOF){
if(c == '-')
f = ;
c = getchar();
}
if(c == EOF)
exit();
while(isdigit(c)){
a = a * + c - ;
c = getchar();
}
return f ? -a : a;
} const int MOD = 1e9 + , INV2 = (MOD + ) >> ; //2*(p+1)/2=1
int n, k; template < class T >
T poww(T a , int b){
T times = ;
while(b){
if(b & ) times = times * a % MOD;
a = a * a % MOD;
b >>= ;
}
return times;
} struct PII{
int st , nd;
PII(int _st = , int _nd = ) : st(_st) , nd(_nd){}
PII operator =(int b){return *this = PII(b , );}
bool operator !=(PII a){return st != a.st || nd != a.nd;}
};
PII operator +(PII a , PII b){return PII((a.st + b.st) % MOD , (a.nd + b.nd) % MOD);}
PII operator -(PII a , PII b){return PII((a.st + MOD - b.st) % MOD , (a.nd + MOD - b.nd) % MOD);}
PII operator *(PII a , PII b){return PII((a.st * b.st + * a.nd * b.nd) % MOD , (a.st * b.nd + a.nd * b.st) % MOD);}
PII operator *(PII a , int b){return PII(a.st * b % MOD , a.nd * b % MOD);}
PII operator %(PII a , int b){return a;}
PII operator /(PII a , PII b){return a * PII(b.st , MOD - b.nd) * poww((b.st * b.st - * b.nd * b.nd % MOD + MOD) % MOD , MOD - );} int solve(int x , int k){
PII all( , );
int C = , sgn = poww(MOD - , k);
for(int j = ; j <= k ; ++j){
PII cur = poww(PII(INV2 , INV2) , j) * poww(PII(INV2 , MOD - INV2) , k - j);
if(cur != PII( , ))
all = all + (poww(cur , x + ) - cur) / (cur - PII( , )) * sgn * C;
else
all = all + PII(x % MOD , ) * sgn * C;
C = C * (k - j) % MOD * poww(j + , MOD - ) % MOD;
sgn = sgn * (MOD - ) % MOD;
}
all = all * poww(PII( , poww(5LL , MOD - )) , k); //模板要求poww的参数类型相同
return all.st;
} signed main(){
for(int T = read() ; T ; --T){
n = read(); k = read();
printf("%lld\n" , solve(n , k));
}
return ;
}

参考链接:https://www.cnblogs.com/Itst/p/10735935.html

最新文章

  1. Struts2入门(三)——数据类型转换
  2. [Unity3d]游戏中子弹碰撞的处理
  3. REDIS 字典数据结构
  4. python——初识socket
  5. C# 程序间通信的各种途径及解析
  6. 求根号m(巴比伦算法)
  7. maven实战_01_搭建maven开发环境
  8. iOS学习笔记-CoreData
  9. mysql常用操作命令
  10. Java引用详解
  11. C# 导出Excel的示例(转)
  12. Python可视化库Matplotlib的使用
  13. 在单体应用的一些DDD实践经验
  14. Docker学习笔记 - Docker的仓库
  15. Android Stdio的问题
  16. Android外包团队——Jquery乱码解决方案
  17. linux内存源码分析 - SLAB分配器概述【转】
  18. Redis学习笔记之入门基础知识——五种数据类型
  19. springboot整合jedisCluster
  20. nagios - 环境搭建

热门文章

  1. [DevExpress] - 使得 XtraEditors.TextEdit 失去焦点(LostFocus)的方法
  2. oracle 常用sql 经典sql函数使用 sql语法
  3. [C++] 例题 2.7.1 用栈实现简易计算器
  4. 20191125:Python中的上下文管理机制with
  5. 18 COUNTIF函数
  6. Go语言学习笔记(10)——错误处理示例
  7. Linux 内核错误码
  8. webpack 3.1 升级webpack 4.0
  9. RuntimeError: Model class users.models.UserProfile doesn&#39;t declare an explicit app_label and isn&#39;t in an application in INSTALLED_APPS.
  10. SQL Server邮件标识点