Problem statement:

Given n processes, each process has a unique PID (process id) and its PPID (parent process id).

Each process only has one parent process, but may have one or more children processes. This is just like a tree structure. Only one process has PPID that is 0, which means this process has no parent process. All the PIDs will be distinct positive integers.

We use two list of integers to represent a list of processes, where the first list contains PID for each process and the second list contains the corresponding PPID.

Now given the two lists, and a PID representing a process you want to kill, return a list of PIDs of processes that will be killed in the end. You should assume that when a process is killed, all its children processes will be killed. No order is required for the final answer.

Example 1:

Input:
pid = [1, 3, 10, 5]
ppid = [3, 0, 5, 3]
kill = 5
Output: [5,10]
Explanation:
3
/ \
1 5
/
10
Kill 5 will also kill 10.

Note:

  1. The given kill id is guaranteed to be one of the given PIDs.
  2. n >= 1.

Solution one: TLE

This is the second question of weekly contest 32. It a very good question, tests your basic computer knowledge and programming skills. It comes from real computer world since the process hierarchy is well-known by every computer scientist.

After extracting the information, it is a BFS model. We can naively search the ppid to get its direct children, and no doubt, it is TLE. For each element, we need O(n) time to search its direct children which is at mot the number of n, time complexity will get as high as O(n ^ n), the space complexity is O(1). But, I stupidly solve the problem like this and report a TLE bug.

class Solution {
public:
vector<int> killProcess(vector<int>& pid, vector<int>& ppid, int kill) {
vector<int> proc;
queue<int> que;
que.push(kill);
while(!que.empty()){
int pp_id = que.front();
proc.push_back(pp_id);
que.pop();
for(int i = ; i < ppid.size(); i++){
if(ppid[i] == pp_id){
que.push(pid[i]);
}
}
}
return proc;
}
};

Solution two: BFS + unordered_map(AC)

We need to optimize the solution one. One preprocessing step is to build a hash table indexed by process ID, and get the direct children set by this index. Each time, the time complexity to get the direct children of a process is O(1), the total time complexity is O(n). The space complexity is O(n) as there is a hash table to store the children information of each process.

class Solution {
public:
vector<int> killProcess(vector<int>& pid, vector<int>& ppid, int kill) {
unordered_map<int, vector<int>> hash; // <pid, children_set>
// build hash table which indexed by process ID
for(int i = ; i < ppid.size(); i++){
hash[ppid[i]].push_back(pid[i]);
}
// bfs queue
queue<int> que;
que.push(kill);
vector<int> proc;
// bfs loop
while(!que.empty()){
int pp_id = que.front();
que.pop();
proc.push_back(pp_id);
for(int i = ; i < hash[pp_id].size(); i++){
que.push(hash[pp_id][i]);
}
}
return proc;
}
};

Solution three: DFS + unordered_map(AC)

Same with solution two, this approach employs DFS to search the process.

class Solution {
public:
vector<int> killProcess(vector<int>& pid, vector<int>& ppid, int kill) {
unordered_map<int, vector<int>> hash_table; // <pid, children_set>
// build hash table which indexed by process ID
for(int i = ; i < ppid.size(); i++){
hash_table[ppid[i]].push_back(pid[i]);
}
vector<int> proc;
proc.push_back(kill);
find_process_dfs(proc, hash_table, kill);
return proc;
}
private:
//dfs search
void find_process_dfs(vector<int>& proc, unordered_map<int, vector<int>>& hash_table, int pid){
for(auto process : hash_table[pid]){
proc.push_back(process);
find_process_dfs(proc, hash_table, process);
}
return;
}
};

最新文章

  1. iOS多图片下载
  2. c++模板使用出错情况error LNK2019: unresolved external symbol &quot;public: float __thiscall Compare&lt;float&gt;::min(void)&quot; (?min@?$Compare@M@@QAEMXZ) referenced in function _main
  3. 根据juery CSS点击一个标签弹出一个遮罩层的简单示例
  4. C++11之thread线程
  5. sift算法c语言实现
  6. gridview列前加复选框需要注意的一点
  7. MySql数据库学习--存储过程(1)
  8. css3类选择器之结合元素选择器和多类选择器
  9. 【Linux】新建用户 用户组
  10. Python-爬虫-猫眼T100
  11. poj1279
  12. nvgre
  13. MySQL中varchar与char区别
  14. WebServer搭建过程
  15. 微信小程序初体验与DEMO分享
  16. 使用ConcurrentLinkedQueue惨痛的教训【转】
  17. dataframe使用笔记
  18. 3.springioc bean 的几个属性
  19. Opencv学习笔记2:图像模糊作用和方法
  20. SQL Server基础知识三十三问 (1-7)

热门文章

  1. Snort里的规则目录文件解读(图文详解)
  2. Windowsforms 中对文件操作
  3. AJPFX关于Java NIO的概述总结
  4. [SPOJ1811]Longest Common Substring 后缀自动机 最长公共子串
  5. vue2.0 路由知识一(路由的创建的全过程)
  6. php简单实用的调试工具类
  7. JavaSE-05 数组
  8. oracle获取排序后的第一条信息
  9. LeetCode136,137寻找只出现一次的数
  10. JS 水印图片合成实例页面