前言

用mininet + floodlight搭建好环境之后,运行flooglight,然后在mininet中建立网络拓扑,建好之后,pingall,所有host之间可以ping通。

然后向控制器floodlight中添加防火墙规则,比如

curl -X POST -d '{"src-ip": "10.0.0.1/32", "dst-ip": "10.0.0.2/32","action":"DENY","priority":"10"}' http://localhost:8080/wm/firewall/rules/json

,然后10.0.0.1与10.0.0.2之间就不能ping通了。

那么,这条规则是如何起作用的呢?

注:为简单起见,文中贴的代码片段是在Floodloght源代码文件基础上删减后的。

首先定位到控制数据包转发的类net.floodlightcontroller.forwarding.Forwarding,从该类的processPacketInMessage方法入手。当交换机收到不知道怎么处理的数据包时(即新来的数据包与交换机里现存的所有flow-entry都不匹配),就以packetIn消息的形式将该数据包传给controller。以下方法就是处理packetIn消息的代码:

public Command processPacketInMessage(IOFSwitch sw, OFPacketIn pi, IRoutingDecision decision, FloodlightContext cntx) {
// If a decision has been made we obey it
// otherwise we just forward
if (decision != null) {switch(decision.getRoutingAction()) {
case NONE:
// don't do anything
return Command.CONTINUE;case FORWARD:
doForwardFlow(sw, pi, cntx, false);
return Command.CONTINUE;
case MULTICAST:
// treat as broadcast
doFlood(sw, pi, cntx);
return Command.CONTINUE;
case DROP:
doDropFlow(sw, pi, decision, cntx);
return Command.CONTINUE;
default:
}
} else {
doForwardFlow(sw, pi, cntx, false);
}
return Command.CONTINUE;
}

上述代码表明,decision决定了一个数据包是被forward还是被drop。特别的,当decision为null时,对该packet进行forward或者flood。

所以接下来看哪里调用了processPacketInMessage方法。找到net.floodlightcontroller.routing.ForwardingBase这个类,该类的receive方法是唯一一个调用了processPacketInMessage方法的函数,以下是代码:

@Override
public Command receive(IOFSwitch sw, OFMessage msg, FloodlightContext cntx) {
switch (msg.getType()) {
case PACKET_IN:
IRoutingDecision decision = null;
if (cntx != null)
decision = IRoutingDecision.rtStore.get(cntx, IRoutingDecision.CONTEXT_DECISION);
return this.processPacketInMessage(sw, (OFPacketIn) msg, decision, cntx);
default:
break;
}
return Command.CONTINUE;
}

上述代码表明decision的值来源于cntx。cntx是一个对象,创建它的类是FloodlightContext,源代码里的注释表示“This is a context object where floodlight listeners can register and later retrieve context information associated with an event”。调用receive的方法有三个,如下:

net.floodlightcontroller.core.internal.Controller.handleMessage(IOFSwitch, OFMessage, FloodlightContext)
net.floodlightcontroller.core.internal.Controller.handleOutgoingMessage(IOFSwitch, OFMessage, FloodlightContext)
net.floodlightcontroller.core.internal.OFSwitchImpl.deliverStatisticsReply(OFMessage)

而cntx的意思大概也明白了:是一个floodlight运行的上下文环境,cntx从floodlight一开始运行的时候就收集一些信息,floodlight里的监听器相关连的事件,如果事件发生,监听器可以从当前的cntx中检索需要的值。可见这个cntx是一个处于线程池中动态更新的对象。

再往下的跟踪超出我的理解范围了(有兴趣的可以自己去跟以下,会跟到net.floodlightcontroller.core.internal.Controller这个类)。可以这么理解:当你向控制器中添加防火墙规则时候,监听器会检测到新事件的产生(添加防火墙规则时,eclipse控制台的突然大量输出可以说明这一点),并将相关信息注册到cntx。

返回来看看processPacketInMessage方法里调用的doDropFlow和doForwardFlow方法。这两个方法也在net.floodlightcontroller.forwarding.Forwarding这个类里。先看doDropFlow方法,代码如下:

protected void doDropFlow(IOFSwitch sw, OFPacketIn pi, IRoutingDecision decision, FloodlightContext cntx) {
// initialize match structure and populate it using the packet
OFMatch match = new OFMatch();
match.loadFromPacket(pi.getPacketData(), pi.getInPort());
if (decision.getWildcards() != null) {
match.setWildcards(decision.getWildcards());
} // Create flow-mod based on packet-in and src-switch
OFFlowMod fm = (OFFlowMod) floodlightProvider.getOFMessageFactory().getMessage(OFType.FLOW_MOD);
List<OFAction> actions = new ArrayList<OFAction>(); // Set no action to drop
long cookie = AppCookie.makeCookie(FORWARDING_APP_ID, 0); fm.setCookie(cookie)
.setHardTimeout((short) 0)
.setIdleTimeout((short) 5)
.setBufferId(OFPacketOut.BUFFER_ID_NONE)
.setMatch(match)
.setActions(actions)
.setLengthU(OFFlowMod.MINIMUM_LENGTH); // +OFActionOutput.MINIMUM_LENGTH); try {
messageDamper.write(sw, fm, cntx);
} catch (IOException e) {
log.error("Failure writing drop flow mod", e);
}
}

上述代码里核心的一句是messageDamper.write(sw, fm, cntx);这行代码表示往交换机sw里下发流表策略。sw是将这个packet传送给controller的交换机。而下发的这些流表就能实现防火墙规则的功能,禁止10.0.0.1与10.0.0.2之间通信。留意fm和cntx,这两个变量决定了下发的流表是什么样的。

再看doForwardFlow方法。doForwardFlow代码复杂一些,把前人的分析copy过来:

参考自http://lamoop.com/post/2013-11-28/40060265578

首先声明一个OFMatch对象,并将packet-in中的相关信息加载到该对象中:

OFMatch match = new OFMatch(); match.loadFromPacket(pi.getPacketData(), pi.getInPort());

然后通过packet-in消息获取目标和源设备(idevice),即以下代码:

IDevice dstDevice =IDeviceService.fcStore.get(cntx, IDeviceService.CONTEXT_DST_DEVICE);
if (dstDevice != null) {
IDevice srcDevice =
IDeviceService.fcStore.
get(cntx, IDeviceService.CONTEXT_SRC_DEVICE);

再然后定位发生packet-in消息的switch所属于的island的标志

Long srcIsland = topology.getL2DomainId(sw.getId());

接下来,判断目标和源设备是否处于同一个island,是则继续,否则执行doFlood方法(类似广播),代码如下:

// Validate that we have a destination known on the same island
// Validate that the source and destination are not on the same switchport
boolean on_same_island = false;
boolean on_same_if = false;
for (SwitchPort dstDap : dstDevice.getAttachmentPoints()) {
long dstSwDpid = dstDap.getSwitchDPID();
Long dstIsland = topology.getL2DomainId(dstSwDpid);
if ((dstIsland != null) && dstIsland.equals(srcIsland)) {
on_same_island = true;
if ((sw.getId() == dstSwDpid) &&
(pi.getInPort() == dstDap.getPort())) {
on_same_if = true;
}
break;
}
} if (!on_same_island) {
// Flood since we don't know the dst device
if (log.isTraceEnabled()) {
log.trace("No first hop island found for destination " +
"device {}, Action = flooding", dstDevice);
}
doFlood(sw, pi, cntx);
return;
}

如果在同一个island中,则通过getAttachmentPoints方法获取目标和源设备相连的交换机的端口信息

SwitchPort[] srcDaps = srcDevice.getAttachmentPoints();
Arrays.sort(srcDaps, clusterIdComparator);
SwitchPort[] dstDaps = dstDevice.getAttachmentPoints();
Arrays.sort(dstDaps, clusterIdComparator);

获取到的结果是两个排序的端口数组,数组的元素类似:

SwitchPort [switchDPID=7, port=2, errorStatus=null]

再接下来进入一个while循环,循环的终止条件是取完上一步得到的两个数组中的元素,目标是找到属于同一个island的分布在两个数组中的元素。循环内部先通过getL2DomainId方法判断,所选取的与目标和源相连接的交换机是否在同一个island,如果不在,则根据两个island标志的大小选择性的选取srcDaps或dstDaps中的其它元素,继续比较,之所以可以这么做,是因为两个数组是经过排序的,而且key就是各个交换机所属的island标志,代码为while循环最后的if-else语句:

} else if (srcVsDest < 0) {
iSrcDaps++;
} else {
iDstDaps++;
}

如果找到两个island相同的元素,会调用routingEngine的getRoute方法获取两个端口之间的路由,这才是我们真正关心的流程。这里并未继续跟踪getRoute是如何获取两个交换机端口之间的最短路径(官网提到获取的路由是最短路径),其获取的结果类似:

[[id=00:00:00:00:00:00:00:07, port=2], [id=00:00:00:00:00:00:00:07, port=3],
[id=00:00:00:00:00:00:00:05, port=2], [id=00:00:00:00:00:00:00:05, port=3],
[id=00:00:00:00:00:00:00:01, port=2], [id=00:00:00:00:00:00:00:01, port=1],
[id=00:00:00:00:00:00:00:02, port=3], [id=00:00:00:00:00:00:00:02, port=1],
[id=00:00:00:00:00:00:00:03, port=3], [id=00:00:00:00:00:00:00:03, port=1]]

接下来利用最初生成的OFMatch对象信息定义一个规则:

wildcard_hints = ((Integer) sw.getAttribute(IOFSwitch.PROP_FASTWILDCARDS))
.intValue()
& ~OFMatch.OFPFW_IN_PORT
& ~OFMatch.OFPFW_DL_VLAN
& ~OFMatch.OFPFW_DL_SRC
& ~OFMatch.OFPFW_DL_DST
& ~OFMatch.OFPFW_NW_SRC_MASK
& ~OFMatch.OFPFW_NW_DST_MASK;

最后调用pushRoute方法,下发路由策略,即flow信息。

pushRoute(route, match, wildcard_hints, pi, sw.getId(), cookie,
cntx, requestFlowRemovedNotifn, false,
OFFlowMod.OFPFC_ADD);

继续追踪pushRoute函数,其在ForwardingBase.java中实现,其实就是循环上面route获取到的最短路径,在每个交换机上添加一条flow,包含inport和outport,当然上面提到的wildcard_hints也会通过setMatch方法设置到没条flow中。

pushRoute函数里也有messageDamper.write(sw, fm, cntx);这行代码。作用与doDropFlow方法里的这行代码一样:往交换机里下发流表策略。doDropFlow里是下发阻止某两个主机通信的流表,而这里下发的流表是为了网络中的其他主机可以通信。

最新文章

  1. TypeScript 2.0候选版(RC)已出,哪些新特性值得我们关注?
  2. 输入5至10之间的数字(用javaScript实现判断)
  3. 《爵迹》侵权链接多为个人用户分享到个人网盘 总结说明:推广途径为 网盘&gt;微博&gt;博客&gt;贴吧&gt;知道
  4. sed命令
  5. 初学JAVA
  6. dipole antenna simulation by FEKO
  7. DOM事件处理有三个阶段
  8. IOS init initWith 等相关集中
  9. javascritpt 原型链
  10. Python 初学者 入门 应该学习 python 2 还是 python 3?
  11. ZOJ-2965
  12. JavaScript中的typeof
  13. Chapter 5 Blood Type——18
  14. kubernetes 基本命令
  15. 数据库开启对sys用户的审计
  16. supervisor安装(sentos7)
  17. direct2d封装
  18. 3.使用Maven构建Web项目
  19. python学习之路---day25( 网络编程基础和初识socket)
  20. ios -WKWebView 高度 准确,留有空白的解决方案

热门文章

  1. Android Audio Play Out Channel
  2. ThreadLocal学习记录
  3. 不同浏览器的DNS超时重发机制(一)
  4. 解决nginx负载均衡的session共享问题
  5. CentOS 普通用户设置sudo权限
  6. API地图坐标转化(批量转换坐标)
  7. backbone前端基础框架搭建
  8. sql server2000中使用convert来取得datetime数据类型样式(全)
  9. Jboss wildfly add JDBC driver
  10. Build Settings