PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。

在Scikit中运用PCA很简单:

import numpy as np
from sklearn import decomposition
from sklearn import datasets iris = datasets.load_iris()
X = iris.data
y = iris.target pca = decomposition.PCA(n_components=3)
pca.fit(X)
X = pca.transform(X)

以上代码是将含有4个特征的数据经过PCA压缩为3个特征。PCA的压缩由如下特点:

  • 新的3个特征并不是随便删除一个特征后留下的,而是4个特征的线性组合。
  • 新的3个特征保留了原有4个特征的绝大部分信息,换句话说就是略有损失。

那么PCA的损失到底是什么? 新特征能否转回旧特征?

这要从PCA过程说起,我把过程缩减如下,毕竟本文重点不是说PCA过程:

PCA过程

1.均值化矩阵X

2.通过一系列矩阵运算得出  特征矩阵P

3.矩阵运算 Y = P * X

Y 即为原始数据降维后的结果,也就是说,得到矩阵P后,我们还可以通过Y=P * X这个算式, 反推回X:

Y = P * X ==>   P(-1) * Y = P(-1) * P * X,  P(-1)是P的逆矩阵, 即 P(-1) * P = 1

==>   P(-1) * Y = X

需要注意的是,程序一开始就已经将原始数据均值化,所以实际上, P(-1)*Y的结果需要去均值化才是原来的样子

在Scikit中,pca.components_就是P的逆矩阵.  从源代码就可以看出(行号33)

    def transform(self, X, y=None):
"""Apply dimensionality reduction to X. X is projected on the first principal components previously extracted
from a training set. Parameters
----------
X : array-like, shape (n_samples, n_features)
New data, where n_samples is the number of samples
and n_features is the number of features. Returns
-------
X_new : array-like, shape (n_samples, n_components) Examples
-------- >>> import numpy as np
>>> from sklearn.decomposition import IncrementalPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> ipca = IncrementalPCA(n_components=2, batch_size=3)
>>> ipca.fit(X)
IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False)
>>> ipca.transform(X) # doctest: +SKIP
"""
check_is_fitted(self, ['mean_', 'components_'], all_or_any=all)
print self.mean_
X = check_array(X)
if self.mean_ is not None:
X = X - self.mean_
X_transformed = fast_dot(X, self.components_.T)
if self.whiten:
X_transformed /= np.sqrt(self.explained_variance_)
return X_transformed

回到开头的压缩代码增加一些输出语句:

iris = datasets.load_iris()
X = iris.data
y = iris.target print X[0]
pca = decomposition.PCA(n_components=3)
pca.fit(X)
X = pca.transform(X) a = np.matrix(X)
b = np.matrix(pca.components_)
c = a * b
mean_of_data = np.matrix([5.84333333, 3.054, 3.75866667, 1.19866667]) print c[0]
print c[0] + mean_of_data

程序打印出原始数据中的第一行,然后将降维后的数据乘上特征矩阵的逆矩阵,加上均值还原回原来的4特征。

输出如下:

 [ 5.1  3.5  1.4  0.2]

 [[-0.74365254  0.44632609 -2.35818399 -0.99942241]]

 [[ 5.09968079  3.50032609  1.40048268  0.19924426]]

由此可看, 经还原后的特征值(行号5)和原来(行号1)相比,每一个特征都略有变化。

如果维度不降,我们可以再看看结果

pca = decomposition.PCA(n_components=4)
pca.fit(X)
X = pca.transform(X) a = np.matrix(X)
b = np.matrix(pca.components_)
c = a * b
mean_of_data = np.matrix([5.84333333, 3.054, 3.75866667, 1.19866667]) print c[0]
print c[0] + mean_of_data

完美还原:

 [ 5.1  3.5  1.4  0.2]

 [[-0.74333333  0.446      -2.35866667 -0.99866667]]

 [[ 5.1  3.5  1.4  0.2]]

最新文章

  1. [总结] Versions crashing in OS X Yosemite (10.10)
  2. redis 简单应用
  3. 一个nginx匹配很诡异的问题
  4. Windows8笔记
  5. python项目在windows下运行出现编码错误的解法
  6. jquery delay()介绍及使用指南
  7. 覆盖equals的时候总要覆盖hashCode
  8. Real-Rime Rendering (2) - 变换和矩阵(Translation and Matrics)
  9. MVC form post 传值
  10. (转).net开发者对android开发一周的学习体会
  11. 基于nodejs模拟浏览器post请求爬取json数据
  12. 第1章1zabbix快速入门
  13. 转csdn-css4
  14. qwe 简易深度框架
  15. iOS9 系统分享调用(UIActivityViewController)
  16. javascript小实例,在页面中输出当前客户端时间
  17. 【原创】大数据基础之Airflow(2)生产环境部署airflow研究
  18. hive SQL 静态分区和 动态分区
  19. windows 下 YII2 配置 memcache
  20. Cesium开发添加entity无法显示

热门文章

  1. B - Median Pyramid Easy 构造题
  2. 如何更改Linux yum源?
  3. HBuilder配置sass
  4. vuejs 学习旅程之 vue-resource
  5. 带你零基础入门redis【二】
  6. 一键部署Moodle开源课程管理系统
  7. MongoDB远程定时备份与还原
  8. Nginx+Keepalived负载均衡+后端LNMP网站集群
  9. Java 方法介绍
  10. java面试题(杨晓峰)---以面试题为切入点,有效提升你的java内功