/**
题目:BZOJ2820 YY的GCD
链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165
题意:神犇YY虐完数论后给傻×kAc出了一题
给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对
kAc这种傻×必然不会了,于是向你来请教……
T = 10000
N, M <= 10000000
思路:
f(n)表示gcd==n的对数。
g(n)表示gcd的n的倍数的对数。
u(d/p) = mu[d/p]; ans = sigma[p是质数,p<=min(n,m)]sigma[p|d] (u(d/p)*g(d)) = sigma[p是质数,p<=min(n,m)]sigma[p|d] (u(d/p)*(n/d)*(m/d)) = sigma[1<=d<=min(n,m)](n/d)*(m/d)sigma[p是d的约数且p是素数](u(d/p)); 参考:http://www.cnblogs.com/candy99/p/6209609.html */
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <iostream>
#include <vector>
#include <map>
using namespace std;
typedef long long LL;
#define ms(x,y) memset(x,y,sizeof x)
typedef pair<int, int> P;
const LL INF = 1e10;
const int mod = 1e9 + ;
const int maxn = 1e7 + ;
int prime[maxn], tot, not_prime[maxn];
int mu[maxn], sum[maxn];
inline int read()
{
char c = getchar();
int x = ;
while(c<''||c>''){
c = getchar();
}
while(c>=''&&c<='') x = x*+c-,c = getchar();
return x;
}
//法2.
//线性筛
//g[i*p[j]]
//当p[j]|i时结果显然为miu(i)
//否则考虑mu(i*p[j]/pp),当p[j]=pp时为mu[i],p[j]!=pp时的所有的和就是-g(i),所以总的结果为mu(i)-g(i)
/*
void mobius()
{
mu[1] = 1;
tot = 0;
for(int i = 2; i < maxn; i++){
if(!not_prime[i]){
mu[i] = -1;
prime[++tot] = i;
sum[i] = 1;
}
for(int j = 1; prime[j]*i<maxn; j++){
not_prime[prime[j]*i] = 1;
if(i%prime[j]==0){
mu[prime[j]*i] = 0;
sum[prime[j]*i] = mu[i];
break;
}
mu[prime[j]*i] = -mu[i];
sum[prime[j]*i] = mu[i]-sum[i];
}
} for(int i = 1; i < maxn; i++) sum[i] += sum[i-1];
}*/
//法1.
//只需要枚举每个素数,将他的倍数的g更新就可以了
//由于有1/1+1/2+1/3+...+1/n=O(logn)这个结论
//因此每个质数枚举时是均摊O(logn)的(*n后好想,是nlogn,但是质数只有n/logn个)
//而质数恰好有O(n/logn)个 因此暴力枚举就是O(n)的
void mobius()
{
mu[] = ;
tot = ;
for(int i = ; i < maxn; i++){
if(!not_prime[i]){
mu[i] = -;
prime[++tot] = i;
}
for(int j = ; prime[j]*i<maxn; j++){
not_prime[prime[j]*i] = ;
if(i%prime[j]==){
mu[prime[j]*i] = ;
break;
}
mu[prime[j]*i] = -mu[i];
}
} for(int i = ; i <= tot; i++){
for(int j = prime[i]; j < maxn; j+=prime[i]){
sum[j] += mu[j/prime[i]];
}
} for(int i = ; i < maxn; i++) sum[i] += sum[i-]; }
LL solve(int n,int m)
{
if(n>m) swap(n,m);
LL ans = ;
int last;
for(int i = ; i <= n; i = last+){
last = min(n/(n/i),m/(m/i));
ans += (LL)(sum[last]-sum[i-])*(n/i)*(m/i);
}
return ans;
} int main()
{
freopen("YYnoGCD.in","r",stdin);
freopen("YYnoGCD.out","w",stdout);
int n, m;
int T;
T = read();
mobius();
while(T--)
{
n = read();
m = read();
printf("%lld\n",solve(n,m));
}
return ;
}

最新文章

  1. springboot+dubbo
  2. javascript 使用btoa和atob来进行Base64转码和解码
  3. cocos2dx的内存管理机制
  4. define与typedef 区别
  5. sendkeys &amp;&amp; appactivate
  6. html5 百分比计算
  7. js后缀判断
  8. hdu_4787_GRE Words Revenge(在线AC自动机)
  9. React Native如何添加自定义图标
  10. Navicat for Mysql 暴力破解教程
  11. Python日志监控系统处理日志(pyinotify)
  12. mysql删除重复数据只保留一条
  13. Python实战171203统计
  14. java 注意事项---避免踩坑
  15. C++ : cin.get()函数和cin函数的使用
  16. 《Spring Boot 入门及前后端分离项目实践》目录
  17. 994.Contiguous Array 邻近数组
  18. 设计模式---接口隔离模式之适配器模式(Adapter)
  19. ansible笔记(11):初识ansible playbook(二)
  20. Django表单介绍

热门文章

  1. Hadoop端口一览表
  2. sdut 3-7 类的友元函数的应用
  3. liunx系统安装jdk的方法
  4. VLC播放RTSP视频延迟问题
  5. Simple Factory (简单工厂模式)
  6. adb shell root
  7. Codeforces 276E(树状数组)
  8. 为 sublime text3 添加 github 上的插件
  9. No enclosing instance of type Demo is accessible. Must qualify the allocation with an enclosing instance of type Demo (e.g. x.new A() where x is an instance of Demo).
  10. Struts2对于i18n的支持