题目链接

题意简介

将一个长度为 2n 的数列平均分为两个子数列 p 和 q 后,p 按从小到大排序,q 按从大到小排序。

排序后,记 p 为 \(\{x_i\}\) ,q 为 \(\{y_i\}\) ,对每种划分方式,有 \(f(p,q) = \sum |x_i - y_i|\)

现在我们想要知道对所有的划分方案 \((p,q)\) ,\(\sum f(p,q)\) 是多少。

数据范围:\(1 \leq n \leq 150000\) 答案对 998244353 取模。

Two partitions of an array are considered different if the sets of indices of elements included in the subsequence p are different.

这句话可以这么理解,就算元素的值相同,只要它们在原数列中的下标不同,就算为不同的元素。

只要原列组中有一个元素的所处位置( p 或 q )不同,就视为两种划分方式不同。

思路分析

考虑暴力,我们会发现我们共需要讨论 \({2n \choose n}\) 种情况,显然不能这么算。

(上面那个是组合数公式 2n 选 n)

于是我们自然而然地想到,既然对每种划分情况行不通,我们就考虑把每个数分开来,讨论其对于答案的贡献

通过对式子的观察,我们可以得出结论:\(x_i,y_i\) 中较大值对答案贡献为正,较小值对答案贡献为负

首先对原数列做排序处理。

现在我们对原数列进行从小到大排序,考虑从左到右选到第 i 个数 \(a_i\) 时,之前选了 \(k\) 个数在数列 q 中,\(i-1-k\) 个数在 p 中的情形。

(为避免重复计算与讨论的麻烦,不妨假设排序时,对于值相同的元素,在 \(\{a_i\}\) 中的下标越小越小。)

于是我们知道,前 i-1 个数都比 \(a_i\) 小。

由于我们从左到右选数,我们不难看出,每选到一个数加入数列 q,这个数将从右往左地添加到 q 中。而如果是加入数列 p,这个数将被从左往右地加入 p 中。如下图:

接下来我们分析,假定我们希望将 \(a_i\) 选入 p 中,那么 \(a_i\) 对应的实际上就是 \(x_{i-1-k}\),想要这个数对答案的贡献为,我们就需要使其对应的 \(y_{i-1-k}\) 比它小。由于我们已经将原数列排序,所以这个 \(y_{i-1-k}\) 在原数列中对应的 \(a_j\) 应有 \(j<i\) 。

而前面的数的选择我们实际上已经决定好了:我们选了 k 个数在 q 中。所以,我们必须要求这 k 个数中的某个数对于的 \(y_i\) 下标等于 \(i-1-k\) 。如下图。

显然,只有当 \(k\geq n-(i-k)+1\) 时,\(a_i\) 对答案的贡献为正。

经过简单的化简,我们得出 \(i > n\) 这样一条与 k 无关的式子。

换句话说,只要满足 \(i > n\) ,任何的将 \(a_i\) 放在 \(p\) 的情形,\(a_i\) 对答案的贡献都是正的。反之,贡献为负。

同理,假如我们考虑把 \(a_i\) 放到 q 中,同理,假如我们希望其贡献为正,那么 \(a_i\) 对应的 \(y_j\) 所对应的 \(x_j\) 所对应的 \(a_l\) 的下标应该出现在 i 之前,也就是比 \(a_i\) 小。

上面这句话可能有点绕。如下图。

显然,只有当 \(i-1-k \geq n-1-k+1\) 时,\(a_i\) 对答案的贡献为正。

化简后,我们又得到了同一条式子:\(i > n\) 。

于是,我们得出结论,无论怎么分,只要 \(i>n\) ,\(a_i\) 对答案的贡献就是正的,反之则是负的。

所以,答案就是 \({2n \choose n} \times (\sum_{i=n+1}^{2n} a_i - \sum_{i=1}^{n} a_i)\)

代码库

#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
#define REG register
#define rep(i,a,b) for(REG int i=a;i<=b;i++)
const int N=3e5+5,mod=998244353;
int A[N],n; ll fac[N],ans1,ans2;
inline ll _pow(ll x,int p){
REG ll ans=1;
while(p) (p&1)&&(ans=ans*x%mod),x=x*x%mod,p>>=1;
return ans;
}
inline ll _inv(ll x){
return _pow(x,mod-2);
}
inline ll C(ll a,ll b){
return fac[a]*_inv(fac[b])%mod*_inv(fac[a-b])%mod;
}
int main(){
scanf("%d",&n);
rep(i,1,n<<1) scanf("%d",A+i);
sort(A+1,A+(n<<1)+1);
fac[0]=1;
rep(i,1,n<<1) fac[i]=fac[i-1]*i%mod;
ll temp=C(n<<1,n);
rep(i,1,n) ans1=(ans1+A[i]*temp)%mod;
rep(i,n+1,n<<1) ans2=(ans2+A[i]*temp)%mod;
printf("%lld\n",(-ans1+ans2+mod)%mod);
return 0;
}

最新文章

  1. So Easy!让开发人员更轻松的工具和资源
  2. Openwrt 无法上40MHZ带宽
  3. VCL -- Understanding the Message-Handling System
  4. mysql并发复制系列 一:binlog组提交
  5. Pull Requests
  6. mysql 分区表详解
  7. 命令行下如何安装VMware Tools并与windows资料共享
  8. wifi 3G 流量
  9. github设置
  10. 深入理解计算机系统_3e 第七章家庭作业 CS:APP3e chapter 7 homework
  11. synchronized修饰static方法与非static方法的区别
  12. Go语言数组和切片的原理
  13. Linux性能监控分析命令(一)—vmstat命令详解
  14. pychrame更换默认以unittest执行或取消单元测试框架执行
  15. c++ 如何获取多线程的返回值?(std::thread ,std::async)
  16. Hadoop的本地库(Native Libraries)介绍
  17. vue教程2-08 自定义键盘信息、监听数据变化vm.$watch
  18. nginx AIO机制与sendfile机制
  19. 我读过的最好的epoll讲解(转)
  20. resize定义元素尺寸大小

热门文章

  1. Spring 集成 RabbitMQ
  2. thinkphp上传图片,生成缩略图
  3. Go-简介
  4. IPV6介绍已经IPV6改造基本步骤
  5. Leetcode-栈&amp;队列
  6. 为啥你用@JsonFormat注解时,LocalDateTime会反序列化失败?
  7. Django新手图文入门教程
  8. DM8数据库备份还原的原理及应用
  9. abp(net core)+easyui+efcore实现仓储管理系统——出库管理之二(五十)
  10. X86保护机制