Paper Information

Title:Variational Graph Auto-Encoders
Authors:Thomas Kipf, M. Welling
Soures:2016, ArXiv
Others:1214 Citations, 14 References

1 A latent variable model for graph-structured data

  VGAE 使用了一个 GCN encoder 和 一个简单的内积 decoder ,架构如下图所示:

  

  Definitions:We are given an undirected, unweighted graph  $\mathcal{G}=(\mathcal{V}, \mathcal{E})$  with  $N=|\mathcal{V}|$  nodes. We introduce an adjacency matrix  $\mathbf{A}$  of  $\mathcal{G}$  (we assume diagonal elements set to $1$ , i.e. every node is connected to itself) and its degree matrix  $\mathbf{D}$ . We further introduce stochastic latent variables  $\mathbf{z}_{i}$ , summarized in an  $N \times F$  matrix  $\mathbf{Z}$ . Node features are summarized in an  $N \times D$  matrix  $\mathbf{X}$ .

  Inference model:使用一个两层的 GCN 推理模型

    $q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A})=\prod_{i=1}^{N} q\left(\mathbf{z}_{i} \mid \mathbf{X}, \mathbf{A}\right) \text { with } \quad q\left(\mathbf{z}_{i} \mid \mathbf{X}, \mathbf{A}\right)=\mathcal{N}\left(\mathbf{z}_{i} \mid \boldsymbol{\mu}_{i}, \operatorname{diag}\left(\boldsymbol{\sigma}_{i}^{2}\right)\right)$

  其中:

    • $\boldsymbol{\mu}=\operatorname{GCN}_{\boldsymbol{\mu}}(\mathbf{X}, \mathbf{A})$  is the matrix of mean vectors  $\boldsymbol{\mu}_{i} $; 
    • $\log \boldsymbol{\sigma}=\mathrm{GCN}_{\boldsymbol{\sigma}}(\mathbf{X}, \mathbf{A})$; 
def encode(self, x, adj):
hidden1 = self.gc1(x, adj)
return self.gc2(hidden1, adj), self.gc3(hidden1, adj) mu, logvar = self.encode(x, adj)

  GCN 的第二层分别输出 mu,log $\sigma$ 矩阵,共用第一层的参数。

  这里 GCN 定义为:
    $\operatorname{GCN}(\mathbf{X}, \mathbf{A})=\tilde{\mathbf{A}} \operatorname{ReLU}\left(\tilde{\mathbf{A}} \mathbf{X} \mathbf{W}_{0}\right) \mathbf{W}_{1}$

  其中:

    • $\mathbf{W}_{i}$ 代表着权重矩阵
    • $\operatorname{GCN}_{\boldsymbol{\mu}}(\mathbf{X}, \mathbf{A})$ 和 $\mathrm{GCN}_{\boldsymbol{\sigma}}(\mathbf{X}, \mathbf{A})$ 共享第一层的权重矩阵 $\mathbf{W}_{0} $
    • $\operatorname{ReLU}(\cdot)=\max (0, \cdot)$
    • $\tilde{\mathbf{A}}=\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$ 代表着  symmetrically normalized adjacency matrix

  至于 $z$ 的生成:

def reparameterize(self, mu, logvar):
if self.training:
std = torch.exp(logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
else:
return mu z = self.reparameterize(mu, logvar)

  Generative model:我们的生成模型是由潜在变量之间的内积给出的:

    $p(\mathbf{A} \mid \mathbf{Z})=\prod_{i=1}^{N} \prod_{j=1}^{N} p\left(A_{i j} \mid \mathbf{z}_{i}, \mathbf{z}_{j}\right) \text { with } p\left(A_{i j}=1 \mid \mathbf{z}_{i}, \mathbf{z}_{j}\right)=\sigma\left(\mathbf{z}_{i}^{\top} \mathbf{z}_{j}\right)$

  其中:

    • $\mathbf{A}$ 是邻接矩阵   
    • $\sigma(\cdot)$ 是 logistic sigmoid function.  
class InnerProductDecoder(nn.Module):
"""Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid):
super(InnerProductDecoder, self).__init__()
self.dropout = dropout
self.act = act def forward(self, z):
z = F.dropout(z, self.dropout, training=self.training)
adj = self.act(torch.mm(z, z.t()))
return adj self.dc = InnerProductDecoder(dropout, act=lambda x: x) adj = self.dc(z)

  Learning:优化变分下界 $\mathcal{L}$ 的参数 $W_i$ :

    $\mathcal{L}=\mathbb{E}_{q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A})}[\log p(\mathbf{A} \mid \mathbf{Z})]-\mathrm{KL}[q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A}) \| p(\mathbf{Z})]$

  其中:

    • $\operatorname{KL}[q(\cdot) \| p(\cdot)]$ 代表着 $q(\cdot)$  和  $p(\cdot)$ 之间的 KL散度。  
    • 高斯先验 $p(\mathbf{Z})=\prod_{i} p\left(\mathbf{z}_{\mathbf{i}}\right)=\prod_{i} \mathcal{N}\left(\mathbf{z}_{i} \mid 0, \mathbf{I}\right)$  

   Non-probabilistic graph auto-encoder (GAE) model

  计算表示向量 $Z$ 和重建的邻接矩阵 $\hat{\mathbf{A}}$

    $\hat{\mathbf{A}}=\sigma\left(\mathbf{Z Z}^{\top}\right), \text { with } \quad \mathbf{Z}=\operatorname{GCN}(\mathbf{X}, \mathbf{A})$

2 Experiments on link prediction

  引文网络中链接预测任务的结果如 Table 1 所示。

  

  GAE* and VGAE* denote experiments without using input features, GAE and VGAE use input features.

最新文章

  1. Css中的两个重要概念:块状元素和内联元素
  2. ASP.NET中的随机密码生成
  3. Linux编译安装Mysql步骤
  4. MSP430G2553之timerA产生PWM
  5. 我的github
  6. 每天一道LeetCode--119.Pascal's Triangle II(杨辉三角)
  7. 探究为何rem在chrome浏览器上计算出错
  8. 一位IT行业高收入者的理财规划方案
  9. 移动端Web页面问题
  10. eclipse怎么连接到MySQL中的表!!!!!
  11. [转]深入浅出JSONP--解决ajax跨域问题
  12. pgsql 递归查询 分页
  13. poj-1031-fence(不是我写的,我只是想看着方便)
  14. Linux文件基本操作管理
  15. fuchsia 内核
  16. @ReequestParam
  17. 编程菜鸟的日记-初学尝试编程-编写函数实现strcmp功能
  18. 【Spark】Spark-架构
  19. Java中的容器 I————浅谈List
  20. hive函数 get_json_object的使用

热门文章

  1. Rock Pi开发笔记(二):入手Rock Pi 4B plus(基于瑞星微RK3399)板子并制作系统运行
  2. Solution -「NOI.AC 省选膜你赛」T2
  3. JUC并发工具类之 CountDownLatch等待多线程完成
  4. python中面向对象知识框架
  5. python-利用xlrd模块读取excel数据,将excel数据转换成字典格式
  6. Java泛型的那些事
  7. 【外企测试面试、笔试】分享下历时8轮、30k+的外企面试全过程
  8. Invoke and BeginInvoke
  9. Oracle之PL/SQL Developer的下载与安装
  10. mapreduce 中 groupingComparator 用法