我一生之敌是状压

本文发表于

题面

给一个 \(n\) 点 \(m\) 边无向图 \(G=(V,E)\) 和一棵树,问有多少个排列 \(\{a_i\}\) 使得对于树上每一条边 \((u,v)\) 都有 \((a_u, a_v)\in E\) .

\(n\le 17\),\(m\le \dfrac 12n(n-1)\) .

题解

前置知识 - 子集反演

首先反演是啥大家都知道吧

正着的子集反演:

\[\boxed{f(S)=\sum_{T\subseteq S}g(T)\quad \Longleftrightarrow\quad g(S)=\sum_{T\subseteq S}(-1)^{|S|-|T|}f(T)}
\]

证明(抄的 vfleaking 神仙的):

Lemma.

\[\sum_{T\subseteq S}(-1)^{|T|}=|S=\varnothing|
\]

和二项式反演形式相似吧


好,回到原命题 .

\[\large\begin{aligned}g(S)&=\sum_{T\subseteq S} [S-T=\varnothing]g(T)\\&=\sum_{T\subseteq S}\sum_{R\subseteq S-T}(-1)^{|R|}g(T)\\&=\sum_{T\subseteq S}(-1)^{|T|}\sum_{R\subseteq S-T}g(R)\\&=\sum_{T\subseteq S}(-1)^{|T|}f(T-S)\\&=\sum_{T\subseteq S}(-1)^{|S|-|T|}f(T)\end{aligned}
\]

和原式长得一模一样,证毕 .


似乎 vfk 的课件里 \(p,q\) 是二进制表示的集合吧,希望我没理解错QwQ

vfk 课件偷偷在第三步换了一下变量名,坏坏

(反向子集反演:

\[f(S)=\sum_{S\subseteq T}g(T)\quad \Longleftrightarrow\quad g(S)=\sum_{S\subseteq T}(-1)^{|T|-|S|}f(T)
\]

可以看做正着反演的直接推论)

别的不说了,这里又不是「子集反演学习笔记」.

1. 朴素 dp

考虑状压 dp.

令 \(dp_{i, j, S}\) 表示 \(i\) 点表示 \(j\),已经表示了 \(S\) 状态的方案数 .

\(i,j\) 维度显然,\(S\) 是为了去重,因为 \(a\) 必须是排列 .

转移非常容易:

\[\large dp_{i, j, S}=\prod_{v\in\operatorname{son}(i)}\sum_{q\subseteq S, (j,p)\in E}dp_{v, p, q}
\]

会点计数原理(加法,乘法)就能推出来 .

时间复杂度 \(O(n^33^n)\) .

定睛一看:\(n\le 17\),寄!

2. 优化一下

看看状态,这个 \(S\) 看起来挺没用,于是直接丢掉!

没了 \(S\) 我们就不能去重了呐,所以 \(a\) 是排列这个东西就不太能保证了 .

在 \(a\) 不一定是排列的前提下,定义:

  • \(f(S)\):\(a\) 恰好使用了 \(S\) 中的所有点的方案数
  • \(g(S)\):\(a\) 至多使用了 \(S\) 中的所有点的方案数

我们要的答案就是 \(f(U)\)(\(U\) 是全集)

显然有

\[g(S)=\sum_{T\subseteq S}f(S)
\]

妈呀这不是子集反演吗,于是

\[f(S)=\sum_{T\subseteq S}(-1)^{|S|-|T|}g(T)
\]

于是我们只要求 \(g\) 即可!

\(g\) 咋求呐?考虑 dp,令 \(dp_{i, j}\) 表示 \(i\) 点表示 \(j\),在 \(g\) 的条件下的方案数 .

于是可以轻易转移(与朴素的类似)

\[\large dp_{i, j}=\prod_{v\in\operatorname{son}(i)}\sum_{p\in S, (j,p)\in E}dp_{v, p}
\]

我草这不是和朴素的一模一样吗

于是

\[\large g(S)=\sum_{k\in S}dp_{root, k}
\]

\(root\) 是树的根,你随便钦定一个就好了 .

单次 dp \(O(n^22^n)\),总时间复杂度 \(O(n^32^n)\),大体能过

细节

答案不大于 \(n!\le 355687428096000\),long long 完全能行 .

然而 \(g(S)\le n^n\le 827240261886336764177\),unsigned long long 都不行 .

我们自然可以用 __int128,但是,其实我们随便选一个幸运数字 \(M>n!\),然后答案对 \(M\) 取模就行了!

方便点,unsigned long long 自然溢出就完啦!是不是很简单

有符号整形溢出是 UB,但是我懒的改了,我代码里是有符号的 .

代码

提交记录 https://uoj.ac/submission/528128 .

吸个氧跑得飞快,不吸就会 TLE(或许是用 vector 太多了?)

自以为可读性好!

Ref.

最新文章

  1. 非关系型数据库来了,CRL快速开发框架升级到版本4
  2. 15个优秀的 Material Design(材料设计)案例
  3. PAT 解题报告 1049. Counting Ones (30)
  4. call函数心得
  5. SOCKET 编程TCP/IP、UDP
  6. MacOS下Rails+Nginx+SSL环境的搭建(下)
  7. vue 构建项目vue-cli
  8. 【Loadrunner】Loadrnner 参数化策略
  9. android逆向四则运算
  10. Java 11 - Java String类
  11. 从后台获取的数据渲染到页面中的dom操作
  12. webapi 设置不显示接口到swaggerUI
  13. 【前端开发】移动端适配方案js,rem单位转换,640设计稿20px=1rem
  14. Android之对TabActivity的见解,个人觉得不错
  15. 树莓派(raspberry pi)学习11: 将树莓派变成一个Web服务器(转)
  16. NYOJ 123 士兵杀敌(四) (线段树)
  17. C++ 判断目录是否存在并新建目录
  18. Element-ui树形控件el-tree获取父级节点的id
  19. 剑指offer-树的子结构17
  20. mysql Connector C++ 操作数据库 vs2012

热门文章

  1. CTFHub-HTTP协议五关刷题解答
  2. Golang 的 `[]interface{}` 类型
  3. 项目中导入本地jar包问题
  4. C# settings 文件基础用法
  5. 『忘了再学』Shell基础 — 17、预定义变量
  6. pandas:数据迭代、函数应用
  7. JS基础二--字面量和变量
  8. Java - 六原则一法则
  9. .NET C#基础(4):属性 - 本质是方法
  10. 【Redis】简单动态字符串SDS