【题解】幼儿园篮球题(NTT+范德蒙德卷积+斯特林数)

题目就是要我们求一个式子(听说叫做超几何分布?好牛逼的名字啊)

\[\sum_{i=1}^{S}\dfrac 1 {N \choose n_i}\sum_{j=0}^{k_i}{m_i \choose j}{n_i-m_i\choose k_i- j}j^L
\]

实际上$S $很小,所以本质上就是求

\[\sum_{j=0}^{k_i}{m_i \choose j}{n_i-m_i\choose k_i- j}j^L
\]

为了方便我写成这个形式

\[\sum_{j=0}^{k}{m \choose j}{n-m\choose k-j}j^L
\]

斯特林数划开次方

\[\sum_{j=0}^{k}{m \choose j}{n-m\choose k-j}\sum_{i=0}^{\min\{j,L\}}{L \brace i}{j \choose i}i!
\]

交换和式

\[\sum_{i=0}^{\min \{k,L\}}{L \brace i}i!\sum_{j=0}^{\min\{k,L\}}{j \choose i}{m\choose j}{n-m\choose k-j}
\]

备胎模型提一下

\[\sum_{i=0}^{\min \{k,L\}}{L \brace i}i!{m \choose i}\sum_{j=0}^{\min\{k,L\}}{m-i\choose j-i} {n-m\choose k-j}
\]

根据黑白模型,提出来(这个还有一个名字叫做范德蒙德卷积)

\[\sum_{i=0}^{\min \{k,L\}}{L \brace i}i!{m \choose i}{n-i\choose k-i}
\]

而\(L \le 2\times 10^5\)

回顾一下求斯特林数

\[{L\brace i}=\dfrac 1{i!}\sum_{j=0}^{i-1}(-1)^{j}{i\choose j}(i-j)^{L}
\]

NTT预处理就好了

仍然不想写代码...什么时候想了就贴一下

upd:补锅

//@winlere
#include<iostream>
#include<cstdio> using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
} namespace poly{
const int maxn=1<<19|1;
int r[maxn]; inline void getr(const int&len){
static int sav=0;
if(len==sav) return;
int cnt=0;
for(register int t=1;t<len;t<<=1)++cnt;
for(register int t=0;t<len;++t) r[t]=r[t>>1]>>1|(t&1)<<cnt>>1;
}
const int mod=998244353;
const int g=3;
inline int ksm(const int&base,const int&p){
register int ret=1;
for(register int t=p,b=base%mod;t;t>>=1,b=1ll*b*b%mod)
if(t&1) ret=1ll*b*ret%mod;
return ret;
}
const int gi=ksm(3,mod-2);
inline void NTT(int*a,const int&len,const int&tag){
int*a0,*a1,s=g;
if(tag!=1) s=gi;
getr(len);
for(register int t=0;t<len;++t) if(t<r[t])swap(a[t],a[r[t]]);
for(register int t=1,wn;t<len;t<<=1){
wn=ksm(s,(mod-1)/(t<<1));
for(register int i=0;i<len;i+=t<<1){
a1=(a0=a+i)+t;
for(register int k=0,w=1,m;k<t;++k,++a1,++a0,w=1ll*w*wn%mod){
m=1ll**a1*w%mod;
*a1=(*a0+mod-m)%mod;
*a0=(*a0+m)%mod;
}
}
}
if(tag!=1) for(register int t=0,w=ksm(len,mod-2);t<len;++t) a[t]=1ll*a[t]*w%mod;
}
}
using namespace poly;
const int maxn2=2e7+3;
int s[maxn],t1[maxn],t2[maxn];
int jc[maxn2],inv[maxn2];
int n,m,S,L; inline void pre(const int&n){
jc[0]=inv[0]=1;
for(register int t=1;t<=n;++t) jc[t]=1ll*jc[t-1]*t%mod;
inv[n]=ksm(jc[n],mod-2);
for(register int t=n-1;t;--t) inv[t]=1ll*inv[t+1]*(t+1)%mod;
for(register int t=0;t<=L;++t) {
t1[t]=inv[t];
if(t&1) t1[t]=mod-t1[t];
t2[t]=1ll*inv[t]*ksm(t,L)%mod;
}
int k=1;
while(k<=L)k<<=1;
NTT(t1,k<<1,1);
NTT(t2,k<<1,1);
for(register int t=0,ed=k<<1;t<ed;++t)s[t]=1ll*t1[t]*t2[t]%mod;
NTT(s,k<<1,-1);
for(register int t=L+1;t<k<<1;++t) s[t]=0;
} inline int c(const int&n,const int&m){
if(n<m)return 0;
return 1ll*jc[n]*inv[m]%mod*inv[n-m]%mod;
} inline int getans(const int&nn,const int&mm,const int&kk){
int ret=0;
for(register int t=0,ed=min(min(L,kk),min(nn,mm));t<=ed;++t)
ret=(ret+1ll*s[t]*inv[mm-t]%mod*jc[nn-t]%mod*inv[kk-t]%mod)%mod;
return 1ll*ret*inv[nn]%mod*jc[mm]%mod*jc[kk]%mod;
} int main(){
n=qr();m=qr();S=qr();L=qr();
pre(max(max(L,m),n));
for(register int t=1,t1,t2,t3;t<=S;++t){
t1=qr();t2=qr();t3=qr();
printf("%d\n",getans(t1,t2,t3));
}
return 0;
}

最新文章

  1. ElasticSearch 5学习(7)——分布式集群学习分享2
  2. android:configChanges=&quot;keyboard|keyboardHidden|orientation|screenSize&quot;
  3. EF 的 霸气配置,秒杀一切
  4. Oracle 增删改查
  5. .gitignore的多级目录配置
  6. 移动平台对于META标签的定义[转]
  7. [ javascript canvas 插件演示 ] canvas 插件演示
  8. Linux系统调用列表
  9. C#后台创建控件并获取值
  10. 【JAVAWEB学习笔记】20_增删改查
  11. Thinkjs学习2—数据库的配置
  12. Scheme N皇后
  13. JavaScript读取对象属性遇到的问题
  14. pytesseract在识别只有一个数字的图片时识别不出来
  15. JavaWeb入门笔记
  16. SVD与SVD++
  17. TNetHTTPClient 使用
  18. 我的tensorflow学习1
  19. AngularJS Notes
  20. Ubuntu系统安装VMware Tools的简单方法

热门文章

  1. @loj - 2092@ 「ZJOI2016」大森林
  2. 如何入门 C++ AMP 教程
  3. hdu 1289 Hat’s IEEE
  4. Timer更新UI的合理办法
  5. 字符串编辑距离(Edit Distance)
  6. git pull 和git fetch区别?
  7. setTimeout与setInterval有何区别?
  8. 2015-2016 ACM-ICPC Southwestern Europe Regional Contest (SWERC 15)
  9. scala资料总结,一些小技巧
  10. H3C PPP的特点