欢迎访问我的GitHub

https://github.com/zq2599/blog_demos

内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;

gRPC学习系列文章链接

  1. 在CentOS7部署和设置GO
  2. GO的gRPC开发环境准备
  3. 初试GO版gRPC开发
  4. 实战四类服务方法
  5. gRPC-Gateway实战
  6. gRPC-Gateway集成swagger

本篇概览

  • 本文《gRPC学习》系列的第四篇,前文咱们体验了最简单的gRPC开发,编写客户端调用服务端,但这只是最简单的一种,在解决实际问题时是远远不够的;
  • 实际上,gRPC允许你定义以下四类服务方法(以下描述来自http://doc.oschina.net/grpc):
  1. 单项 RPC,即客户端发送一个请求给服务端,从服务端获取一个应答,就像一次普通的函数调用(前一篇文章就是此类);
  2. 服务端流式 RPC,即客户端发送一个请求给服务端,可获取一个数据流用来读取一系列消息。客户端从返回的数据流里一直读取直到没有更多消息为止;
  3. 客户端流式 RPC,即客户端用提供的一个数据流写入并发送一系列消息给服务端。一旦客户端完成消息写入,就等待服务端读取这些消息并返回应答;
  4. 双向流式 RPC,即两边都可以分别通过一个读写数据流来发送一系列消息。这两个数据流操作是相互独立的,所以客户端和服务端能按其希望的任意顺序读写,例如:服务端可以在写应答前等待所有的客户端消息,或者它可以先读一个消息再写一个消息,或者是读写相结合的其他方式。每个数据流里消息的顺序会被保持。
  • 本篇的内容,就是编码实现上述四类服务方法,并编写客户端代码调用,整个开发流程如下图所示:

源码下载

名称 链接 备注
项目主页 https://github.com/zq2599/blog_demos 该项目在GitHub上的主页
git仓库地址(https) https://github.com/zq2599/blog_demos.git 该项目源码的仓库地址,https协议
git仓库地址(ssh) git@github.com:zq2599/blog_demos.git 该项目源码的仓库地址,ssh协议
  • 这个git项目中有多个文件夹,本章的应用在go-source文件夹下,如下图红框所示:

  • go-source里面有多个子文件夹,本篇的源码在grpcstream中,如下图红框:

提前说明文件和目录

  • 本次实战在$GOPATH/src目录下新增文件夹grpcstream,里面总共有以下内容:
[golang@centos7 src]$ tree grpcstream/
grpcstream/
├── client
│ └── client.go
├── grpcstream.pb.go
├── grpcstream.proto
└── server
└── server.go
  • 准备工作完成,接下来正式开始开发;

编写proto文件

  • proto文件用来描述远程服务相关的信息,如方法签名、数据结构等,本篇的proto文件名为grpcstream.proto,位置是$GOPATH/src/grpcstream,内容如下(稍后会指出几处要注意的地方):
// 协议类型
syntax = "proto3"; // 包名
package grpcstream; // 服务端请求的数据结构
message SingleRequest {
int32 id = 1;
} // 服务端响应的数据结构
message SingleResponse {
int32 id = 1;
string name = 2;
} // 定义的服务名
service IGrpcStremService {
// 单项RPC :单个请求,单个响应
rpc SingleReqSingleResp (SingleRequest) returns (SingleResponse); // 服务端流式 :单个请求,集合响应
rpc SingleReqMultiResp (SingleRequest) returns (stream SingleResponse); // 客户端流式 :集合请求,单个响应
rpc MultiReqSingleResp (stream SingleRequest) returns (SingleResponse); // 双向流式 :集合请求,集合响应
rpc MultiReqMultiResp (stream SingleRequest) returns (stream SingleResponse);
}
  • 这个grpcstream.proto文件有以下几处要注意的地方:
  1. 方法SingleReqSingleResp非常简单,和上一篇文章中的demo一样,入参是一个数据结构,服务端返回的也是一个数据结构;
  2. 方法SingleReqSingleResp是服务端流式类型,特征是返回值用stream修饰;
  3. 方法MultiReqSingleResp是客户端流式类型,特征是入参用stream修饰;
  4. 方法MultiReqMultiResp是双向类型,特征是入参和返回值都用stream修饰;
  • 似乎有规律可循:客户端如果想和服务端建立通道传输持续的数据,就在通道位置用stream修饰,一共有两个位置,第一个是进入服务端的入参,第二个是从服务端出来的返回值;

根据proto生成go源码

  1. 在grpcstream.proto所在的目录,执行以下命令:
protoc --go_out=plugins=grpc:. grpcstream.proto
  1. 如果grpcstream.proto没有语法错误,会在当前目录生成文件grpcstream.pb.go,这里面是工具protoc-gen-go自动生成的代码,里面生成的代码在开发服务端和客户端时都会用到;
  2. 对服务端来说,grpcstream.pb.go中最重要的是IGrpcStremServiceServer接口 ,服务端需要实现该接口所有的方法作为业务逻辑,接口定义如下:
type IGrpcStremServiceServer interface {
// 单项流式 :单个请求,单个响应
SingleReqSingleResp(context.Context, *SingleRequest) (*SingleResponse, error)
// 服务端流式 :单个请求,集合响应
SingleReqMultiResp(*SingleRequest, IGrpcStremService_SingleReqMultiRespServer) error
// 客户端流式 :集合请求,单个响应
MultiReqSingleResp(IGrpcStremService_MultiReqSingleRespServer) error
// 双向流式 :集合请求,集合响应
MultiReqMultiResp(IGrpcStremService_MultiReqMultiRespServer) error
}
  1. 对客户端来说,grpcstream.pb.go中最重要的是IGrpcStremServiceClient接口,如下所示,这意味这客户端可以发起哪些远程调用 :
type IGrpcStremServiceClient interface {
// 单项流式 :单个请求,单个响应
SingleReqSingleResp(ctx context.Context, in *SingleRequest, opts ...grpc.CallOption) (*SingleResponse, error)
// 服务端流式 :单个请求,集合响应
SingleReqMultiResp(ctx context.Context, in *SingleRequest, opts ...grpc.CallOption) (IGrpcStremService_SingleReqMultiRespClient, error)
// 客户端流式 :集合请求,单个响应
MultiReqSingleResp(ctx context.Context, opts ...grpc.CallOption) (IGrpcStremService_MultiReqSingleRespClient, error)
// 双向流式 :集合请求,集合响应
MultiReqMultiResp(ctx context.Context, opts ...grpc.CallOption) (IGrpcStremService_MultiReqMultiRespClient, error)
}

编写服务端代码server.go并启动

  • 在$GOPATH/src/grpcstream目录下新建文件夹server,在此文件夹下新建server.go,内容如下(稍后会指出几处要注意的地方):
package main

import (
"context"
"google.golang.org/grpc"
pb "grpcstream"
"io"
"log"
"net"
"strconv"
) // 常量:监听端口
const (
port = ":50051"
) // 定义结构体,在调用注册api的时候作为入参,
// 该结构体会带上proto中定义的方法,里面是业务代码
// 这样远程调用时就执行了业务代码了
type server struct {
// pb.go中自动生成的,是个空结构体
pb.UnimplementedIGrpcStremServiceServer
} // 单项流式 :单个请求,单个响应
func (s *server) SingleReqSingleResp(ctx context.Context, req *pb.SingleRequest) (*pb.SingleResponse, error) {
id := req.GetId() // 打印请求参数
log.Println("1. 收到请求:", id)
// 实例化结构体SingleResponse,作为返回值
return &pb.SingleResponse{Id: id, Name: "1. name-" + strconv.Itoa(int(id))}, nil
} // 服务端流式 :单个请求,集合响应
func (s *server) SingleReqMultiResp(req *pb.SingleRequest, stream pb.IGrpcStremService_SingleReqMultiRespServer) error {
// 取得请求参数
id := req.GetId() // 打印请求参数
log.Println("2. 收到请求:", id) // 返回多条记录
for i := 0; i < 10; i++ {
stream.Send(&pb.SingleResponse{Id: int32(i), Name: "2. name-" + strconv.Itoa(i)})
} return nil
} // 客户端流式 :集合请求,单个响应
func (s *server) MultiReqSingleResp(reqStream pb.IGrpcStremService_MultiReqSingleRespServer) error {
var addVal int32 = 0 // 在for循环中接收流式请求
for {
// 一次接受一条记录
singleRequest, err := reqStream.Recv() // 不等于io.EOF表示这是条有效记录
if err == io.EOF {
log.Println("3. 客户端发送完毕")
break
} else if err != nil {
log.Fatalln("3. 接收时发生异常", err)
break
} else {
log.Println("3. 收到请求:", singleRequest.GetId())
// 收完之后,执行SendAndClose返回数据并结束本次调用
addVal += singleRequest.GetId()
}
} return reqStream.SendAndClose(&pb.SingleResponse{Id: addVal, Name: "3. name-" + strconv.Itoa(int(addVal))})
} // 双向流式 :集合请求,集合响应
func (s *server) MultiReqMultiResp(reqStream pb.IGrpcStremService_MultiReqMultiRespServer) error {
// 简单处理,对于收到的每一条记录都返回一个响应
for {
singleRequest, err := reqStream.Recv() // 不等于io.EOS表示这是条有效记录
if err == io.EOF {
log.Println("4. 接收完毕")
return nil
} else if err != nil {
log.Fatalln("4. 接收时发生异常", err)
return err
} else {
log.Println("4. 接收到数据", singleRequest.GetId()) id := singleRequest.GetId() if sendErr := reqStream.Send(&pb.SingleResponse{Id: id, Name: "4. name-" + strconv.Itoa(int(id))}); sendErr != nil {
log.Println("4. 返回数据异常数据", sendErr)
return sendErr
}
}
}
} func main() {
// 要监听的协议和端口
lis, err := net.Listen("tcp", port)
if err != nil {
log.Fatalf("failed to listen: %v", err)
} // 实例化gRPC server结构体
s := grpc.NewServer() // 服务注册
pb.RegisterIGrpcStremServiceServer(s, &server{}) log.Println("开始监听,等待远程调用...") if err := s.Serve(lis); err != nil {
log.Fatalf("failed to serve: %v", err)
}
}
  • 这个server.go文件有以下几处要注意的地方:
  1. SingleReqMultiResp方法的作用是收到客户端一个请求参数,然后向客户端发送多个响应,可见多次调用stream.Send方法即可多次发送数据到客户端;
  2. MultiReqSingleResp方法可以从客户端收到多条数据,可见是在for循环中重复调用reqStream.Recv()方法,直到收到客户端的io.EOF为止,这就要就客户端在发送完数据后再给一个io.EOF过来,稍后的客户端代码会展示如何做;
  3. MultiReqMultiResp方法持续接受客户端数据,并且持续发送数据给客户端,一定要把顺序问题考虑清楚,否则会陷入异常(例如一方死循环),我这里的逻辑是收到客户端的io.EOF为止,这就要就客户端在发送完数据后再给一个io.EOF过来,如果客户端也在用for循环一直等数据,那就是双方都在等数据了,无法终止程序,稍后的客户端代码会展示如何做;
  • 在server.go所在目录执行go run server.go,控制台提示如下:
[golang@centos7 server]$ go run server.go
2020/12/13 21:29:19 开始监听,等待远程调用...
  • 此时gRPC的服务端已经启动,可以响应远程调用,接下来开发客户端代码;

编写客户端代码client.go

  • 再打开一个控制台;
  • 在$GOPATH/src/grpcstream目录下新建文件夹client,在此文件夹下新建client.go,内容如下(稍后会指出几处要注意的地方):
package main

import (
"context"
"google.golang.org/grpc"
"io"
"log"
"time" pb "grpcstream"
) const (
address = "localhost:50051"
defaultId = "666"
) func main() {
// 远程连接服务端
conn, err := grpc.Dial(address, grpc.WithInsecure(), grpc.WithBlock())
if err != nil {
log.Fatalf("did not connect: %v", err)
} // main方法执行完毕后关闭远程连接
defer conn.Close() // 实例化数据结构
client := pb.NewIGrpcStremServiceClient(conn) // 超时设置
ctx, cancel := context.WithTimeout(context.Background(), time.Second) defer cancel() log.Println("测试单一请求应答,一对一")
singleReqSingleResp(ctx, client) log.Println("测试服务端流式应答,一对多")
singleReqMultiResp(ctx, client) log.Println("测试客户端流式请求,多对一")
multiReqSingleResp(ctx, client) log.Println("测试双向流式请求应答,多对多")
multiReqMultiResp(ctx, client) log.Println("测试完成")
} func singleReqSingleResp(ctx context.Context, client pb.IGrpcStremServiceClient) error {
// 远程调用
r, err := client.SingleReqSingleResp(ctx, &pb.SingleRequest{Id: 101}) if err != nil {
log.Fatalf("1. 远程调用异常 : %v", err)
return err
} // 将服务端的返回信息打印出来
log.Printf("response, id : %d, name : %s", r.GetId(), r.GetName()) return nil
} func singleReqMultiResp(ctx context.Context, client pb.IGrpcStremServiceClient) error {
// 远程调用
recvStream, err := client.SingleReqMultiResp(ctx, &pb.SingleRequest{Id: 201}) if err != nil {
log.Fatalf("2. 远程调用异常 : %v", err)
return err
} for {
singleResponse, err := recvStream.Recv()
if err == io.EOF {
log.Printf("2. 获取数据完毕")
break
} log.Printf("2. 收到服务端响应, id : %d, name : %s", singleResponse.GetId(), singleResponse.GetName())
} return nil
} func multiReqSingleResp(ctx context.Context, client pb.IGrpcStremServiceClient) error {
// 远程调用
sendStream, err := client.MultiReqSingleResp(ctx) if err != nil {
log.Fatalf("3. 远程调用异常 : %v", err)
return err
} // 发送多条记录到服务端
for i:=0; i<10; i++ {
if err = sendStream.Send(&pb.SingleRequest{Id: int32(300+i)}); err!=nil {
log.Fatalf("3. 通过流发送数据异常 : %v", err)
return err
}
} singleResponse, err := sendStream.CloseAndRecv() if err != nil {
log.Fatalf("3. 服务端响应异常 : %v", err)
return err
} // 将服务端的返回信息打印出来
log.Printf("response, id : %d, name : %s", singleResponse.GetId(), singleResponse.GetName()) return nil
} func multiReqMultiResp(ctx context.Context, client pb.IGrpcStremServiceClient) error {
// 远程调用
intOutStream, err := client.MultiReqMultiResp(ctx) if err != nil {
log.Fatalf("4. 远程调用异常 : %v", err)
return err
} // 发送多条记录到服务端
for i:=0; i<10; i++ {
if err = intOutStream.Send(&pb.SingleRequest{Id: int32(400+i)}); err!=nil {
log.Fatalf("4. 通过流发送数据异常 : %v", err)
return err
}
} // 服务端一直在接收,直到收到io.EOF为止
// 因此,这里必须发送io.EOF到服务端,让服务端知道发送已经结束(很重要)
intOutStream.CloseSend() // 接收服务端发来的数据
for {
singleResponse, err := intOutStream.Recv()
if err == io.EOF {
log.Printf("4. 获取数据完毕")
break
} else if err != nil {
log.Fatalf("4. 接收服务端数据异常 : %v", err)
break
} log.Printf("4. 收到服务端响应, id : %d, name : %s", singleResponse.GetId(), singleResponse.GetName())
} return nil
}
  • 这个client.go文件有以下几处要注意的地方:
  1. singleReqMultiResp方法会接收服务端的多条记录,在for循环中调用recvStream.Recv即可收到所有数据;
  2. multiReqSingleResp方法会向服务端发送多条数据,由于服务端在等待io.EOF作为结束标志,因此调用sendStream.CloseAndRecv即可发送io.EOF,并得到服务端的返回值;
  3. multiReqMultiResp方法在持续向服务端发送数据,并且也在持续获取服务端发来的数据,在发送数据完成后,必须调用intOutStream.CloseSend方法,即可发送io.EOF,让服务端不再接收数据,避免前面提到的死循环;
  4. 在main方法中,依次发起四类服务方法的调用;

执行客户端

  • 编码完成后,在client.go所在目录执行go run client.go,会立即向服务端发起远程调用,控制台提示如下,可见四类服务方法测试全部成功,响应的数据都符合预期:
[golang@centos7 client]$ go run client.go
2020/12/13 21:39:35 测试单一请求应答,一对一
2020/12/13 21:39:35 response, id : 101, name : 1. name-101
2020/12/13 21:39:35 测试服务端流式应答,一对多
2020/12/13 21:39:35 2. 收到服务端响应, id : 0, name : 2. name-0
2020/12/13 21:39:35 2. 收到服务端响应, id : 1, name : 2. name-1
2020/12/13 21:39:35 2. 收到服务端响应, id : 2, name : 2. name-2
2020/12/13 21:39:35 2. 收到服务端响应, id : 3, name : 2. name-3
2020/12/13 21:39:35 2. 收到服务端响应, id : 4, name : 2. name-4
2020/12/13 21:39:35 2. 收到服务端响应, id : 5, name : 2. name-5
2020/12/13 21:39:35 2. 收到服务端响应, id : 6, name : 2. name-6
2020/12/13 21:39:35 2. 收到服务端响应, id : 7, name : 2. name-7
2020/12/13 21:39:35 2. 收到服务端响应, id : 8, name : 2. name-8
2020/12/13 21:39:35 2. 收到服务端响应, id : 9, name : 2. name-9
2020/12/13 21:39:35 2. 获取数据完毕
2020/12/13 21:39:35 测试客户端流式请求,多对一
2020/12/13 21:39:35 response, id : 3045, name : 3. name-3045
2020/12/13 21:39:35 测试双向流式请求应答,多对多
2020/12/13 21:39:35 4. 收到服务端响应, id : 400, name : 4. name-400
2020/12/13 21:39:35 4. 收到服务端响应, id : 401, name : 4. name-401
2020/12/13 21:39:35 4. 收到服务端响应, id : 402, name : 4. name-402
2020/12/13 21:39:35 4. 收到服务端响应, id : 403, name : 4. name-403
2020/12/13 21:39:35 4. 收到服务端响应, id : 404, name : 4. name-404
2020/12/13 21:39:35 4. 收到服务端响应, id : 405, name : 4. name-405
2020/12/13 21:39:35 4. 收到服务端响应, id : 406, name : 4. name-406
2020/12/13 21:39:35 4. 收到服务端响应, id : 407, name : 4. name-407
2020/12/13 21:39:35 4. 收到服务端响应, id : 408, name : 4. name-408
2020/12/13 21:39:35 4. 收到服务端响应, id : 409, name : 4. name-409
2020/12/13 21:39:35 4. 获取数据完毕
2020/12/13 21:39:35 测试完成
  • 再去服务端的控制台看一下,通过日志发现业务代码被执行,收到了远程请求的参数:
[golang@centos7 server]$ go run server.go
2020/12/13 21:29:19 开始监听,等待远程调用...
2020/12/13 21:39:35 1. 收到请求: 101
2020/12/13 21:39:35 2. 收到请求: 201
2020/12/13 21:39:35 3. 收到请求: 300
2020/12/13 21:39:35 3. 收到请求: 301
2020/12/13 21:39:35 3. 收到请求: 302
2020/12/13 21:39:35 3. 收到请求: 303
2020/12/13 21:39:35 3. 收到请求: 304
2020/12/13 21:39:35 3. 收到请求: 305
2020/12/13 21:39:35 3. 收到请求: 306
2020/12/13 21:39:35 3. 收到请求: 307
2020/12/13 21:39:35 3. 收到请求: 308
2020/12/13 21:39:35 3. 收到请求: 309
2020/12/13 21:39:35 3. 客户端发送完毕
2020/12/13 21:39:35 4. 接收到数据 400
2020/12/13 21:39:35 4. 接收到数据 401
2020/12/13 21:39:35 4. 接收到数据 402
2020/12/13 21:39:35 4. 接收到数据 403
2020/12/13 21:39:35 4. 接收到数据 404
2020/12/13 21:39:35 4. 接收到数据 405
2020/12/13 21:39:35 4. 接收到数据 406
2020/12/13 21:39:35 4. 接收到数据 407
2020/12/13 21:39:35 4. 接收到数据 408
2020/12/13 21:39:35 4. 接收到数据 409
2020/12/13 21:39:35 4. 接收完毕
  • 至此,gRPC的四类服务方法的服务端、客户端开发咱们都尝试过了,这四类方法已经可以覆盖了大多数业务场景需求,希望本文能给您一些参考,接下来的文章会继续学习gRPC丰富的功能;

你不孤单,欣宸原创一路相伴

  1. Java系列
  2. Spring系列
  3. Docker系列
  4. kubernetes系列
  5. 数据库+中间件系列
  6. DevOps系列

欢迎关注公众号:程序员欣宸

微信搜索「程序员欣宸」,我是欣宸,期待与您一同畅游Java世界...

https://github.com/zq2599/blog_demos

最新文章

  1. 深入理解CSS过渡transition
  2. AVPlayer
  3. 【转】c# 调用windows API(user32.dll)
  4. JAVA运行java程序
  5. CentOS 6.6 yum 搭建LAMP环境
  6. .NET 4.0 MemoryCache with SqlChangeMonitor
  7. POJ 3268 Silver Cow Party (Dijkstra)
  8. ubuntu笔记1
  9. AIR串口通信
  10. [课程相关]homework-03
  11. 《Java并发编程实战》第十一章 性能与可伸缩性 读书笔记
  12. 1 加到 100 的 时间复杂度 C#.
  13. setWillNotDraw和setFillViewport
  14. NLP自然语言处理原理及名词介绍
  15. hyperopt自动调参
  16. mobile_轮播图_transform 版本_transform 读写二合一
  17. 前端获取的数据是undefined
  18. Node.js代码模块化
  19. webpack.base.conf.js
  20. 【代码笔记】iOS-产生随机数

热门文章

  1. 箭头函数中this指向问题
  2. Spring Cloud中,如何解决Feign/Ribbon第一次请求失败的问题?
  3. macos 安装telnet命令
  4. ssm跨域解决
  5. XCTF_MFC逆向
  6. Linux | 压缩与解压详解
  7. Linux groupadd and groupmod
  8. SpringBoot 整合 MybatisPlus 3.0
  9. UI自动化学习笔记- PO模型介绍和使用
  10. Optional 的使用会导致性能下降吗?