构造一棵权值范围恰为$[0,2^{60})$的权值线段树,考虑其中从下往上第$h$层($0\le h\le 60$)中的一个区间,假设其左端点为$l$,即$[l,l+2^{h})$

这样的一个区间具有一个很好的性质,其是按位独立的,即其等价于二进制下最高的$60-h$位与$l$相同,剩下的$h$位任意的数所构成的集合

对于这样的两个集合$[l_{1},l_{1}+2^{h_{1}})$和$[l_{2},l_{2}+2^{h_{2}})$合并的结果,也就是最高的$60-\max(h_{1},h_{2})$位与$l_{1}\oplus l_{2}$相同,剩下的$\max(h_{1},h_{2})$位任意的数所构成的集合,证明利用按位独立的性质分析即可

更具体的,合并结果对应于区间$[l_{3},l_{3}+2^{\max(h_{1},h_{2})})$,其中$l_{3}=(l_{1}\oplus l_{2})\and (2^{60}-2^{\max(h_{1},h_{2})}))$(后者的意义即取$l_{1}\oplus l_{2}$二进制下最高的$60-\max(h_{1},h_{2})$位)

考虑将$n_{a}$和$n_{b}$个区间分别插入线段树,划分为$\log V$个线段树上区间(即分别有$n_{a}\log V$和$n_{b}\log V$个区间),将其两两按上述方法合并,再对最终的区间快排,复杂度即$o(n^{2}\log^{3}V)$(其中$V$为值域,即$10^{18}$)

这样的复杂度是不能接受的,需要进行优化

对于这个合并的结果(不妨假设$h_{1}\ge h_{2}$),等价于$[l_{1},l_{1}+2^{h_{1}})$与$[l_{3},l_{3}+2^{h_{1}})$(其中$l_{3}=l_{2}\and(2^{60}-2^{h_{1}})$),在线段树上也就是$[l_{2},l_{2}+2^{h_{2}})$这个区间所对应的节点在从下往上第$h_{1}$层的祖先

(以$n_{a}$个区间为例)定义一个节点被标记即其是$n_{a}\log V$个区间中的一个,将所有节点分为三类:

1.其自身被标记

2.其自身未被标记且其子树内存在节点被标记

3.其子树内(包括自身)无节点被标记

类似地,对于$n_{b}\log V$个区间也可以得到节点类型,那么也就可以看作$n_{a}\log V$个区间中1类节点和$n_{b}\log V$个区间中的2类节点两两合并以及前者的2类节点和后者的1类节点两两合并

(关于原因可以参考前面的说明,也就是将所有节点先提到同一层)

对于这样的复杂度,分别考虑每一层第1类和第2类节点个数:

1.第1类节点,也就是被严格包含,但如果其与其兄弟同时被包含即不需要被插入,同时被包含的节点必然是连续若干个,那么至多两个(否则必然存在兄弟)

2.第2类节点,也就是线段树在递归过程中经过且未结束的节点,更具体的即有交点但不被包含,显然每一次插入后每一层至多新增两个(最左边和最右边)

综上,每一层两类的节点数都是$o(n)$的,那么每一层合并复杂度为$o(n^{2})$,总区间个数降为$o(n^{2}\log V)$,再对其排序复杂度即$o(n^{2}\log^{2}V)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 105
4 #define mod 998244353
5 #define ll long long
6 #define mid (l+r>>1)
7 #define pll pair<ll,ll>
8 #define fi first
9 #define se second
10 pll a[8*N*N*N];
11 vector<ll>v[4][N];
12 int V,rt,n,na,nb,ans,ls[4*N*N],rs[4*N*N];
13 ll m,x,y;
14 int sum(ll x,ll y){
15 int s1=(x+y)%mod,s2=(y-x+1)%mod;
16 return 1LL*s1*s2%mod*(mod+1)/2%mod;
17 }
18 void update(int p,int &k,ll l,ll r,ll x,ll y,int z){
19 if ((l>y)||(x>r))return;
20 if (!k)k=++V;
21 if ((x<=l)&&(r<=y)){
22 v[p][z].push_back(l);
23 return;
24 }
25 v[p+2][z].push_back(l);
26 update(p,ls[k],l,mid,x,y,z-1);
27 update(p,rs[k],mid+1,r,x,y,z-1);
28 }
29 int main(){
30 m=(1LL<<60)-1;
31 scanf("%d",&na);
32 for(int i=1;i<=na;i++){
33 scanf("%lld%lld",&x,&y);
34 update(0,rt,0,m,x,y,60);
35 }
36 scanf("%d",&nb);
37 for(int i=1;i<=nb;i++){
38 scanf("%lld%lld",&x,&y);
39 update(1,rt,0,m,x,y,60);
40 }
41 for(int i=0;i<=60;i++){
42 for(int j=0;j<v[0][i].size();j++)
43 for(int k=0;k<v[1][i].size();k++){
44 x=(v[0][i][j]^v[1][i][k]);
45 a[++n]=make_pair(x,x+(1LL<<i)-1);
46 }
47 for(int j=0;j<v[0][i].size();j++)
48 for(int k=0;k<v[3][i].size();k++){
49 x=(v[0][i][j]^v[3][i][k]);
50 a[++n]=make_pair(x,x+(1LL<<i)-1);
51 }
52 for(int j=0;j<v[1][i].size();j++)
53 for(int k=0;k<v[2][i].size();k++){
54 x=(v[1][i][j]^v[2][i][k]);
55 a[++n]=make_pair(x,x+(1LL<<i)-1);
56 }
57 }
58 sort(a+1,a+n+1);
59 ll s=0;
60 for(int i=1;i<=n;i++){
61 if (a[i].fi>s)ans=(ans+sum(a[i].fi,a[i].se))%mod;
62 else{
63 if (s<a[i].se)ans=(ans+sum(s+1,a[i].se))%mod;
64 }
65 s=max(s,a[i].se);
66 }
67 printf("%d",ans);
68 }

最新文章

  1. go中安装Beego不成功笔记
  2. 由Collections.unmodifiableList引发的重构
  3. tcl实现http请求
  4. sqoop的merge和eval 工具
  5. windows装了双系统设置默认启动系统
  6. treepanel加滚动条
  7. iOS - Block 代码块
  8. ADO.NET EF实体框架
  9. eclipse 更改默认主题,重写默认滚动条样式(安装DevStyle主题插件)
  10. mysq建表参数设置
  11. 《ASP.NET Core In Action》读书笔记系列,这是一个手把手的从零开始的教学系列目录
  12. C# 基础运算符及运算
  13. MT【198】连乘积放缩
  14. 自己写的一个Vue
  15. C++ 函数适配器
  16. MYSQL判断不存在时创建表或创建数据库
  17. JSP判断闰年
  18. Goldbach`s Conjecture(素筛水题)题解
  19. [leetcode]228. Summary Ranges区间统计
  20. XSS第四节,XSS攻击实例(一)

热门文章

  1. 在开源项目或项目中使用git建立fork仓库
  2. node-pre-gyp以及node-gyp的源码简单解析(以安装sqlite3为例)
  3. 『基于ArcGIS的Python编程秘籍(第2版)』书本源码
  4. hdu3001(三进制状压)
  5. GoLang设计模式10 - 中介者模式
  6. Java读取属性配置文件-properties
  7. 实用 | 利用 aardio 配合 Python 快速开发桌面应用
  8. C语言对&quot;不定长&quot;字符串数组的遍历
  9. 2021-2022 20211420 《信息安全专业导论》安装Linux操作系统并学习Linux基础
  10. &#39;\r&#39;(回车符),&#39;\n&#39;(换行符)与&quot;\r\n&quot;