题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1150

Machine Schedule

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6733    Accepted Submission(s):
3375

Problem Description
As we all know, machine scheduling is a very classical
problem in computer science and has been studied for a very long history.
Scheduling problems differ widely in the nature of the constraints that must be
satisfied and the type of schedule desired. Here we consider a 2-machine
scheduling problem.

There are two machines A and B. Machine A has n kinds
of working modes, which is called mode_0, mode_1, …, mode_n-1, likewise machine
B has m kinds of working modes, mode_0, mode_1, … , mode_m-1. At the beginning
they are both work at mode_0.

For k jobs given, each of them can be
processed in either one of the two machines in particular mode. For example, job
0 can either be processed in machine A at mode_3 or in machine B at mode_4, job
1 can either be processed in machine A at mode_2 or in machine B at mode_4, and
so on. Thus, for job i, the constraint can be represent as a triple (i, x, y),
which means it can be processed either in machine A at mode_x, or in machine B
at mode_y.

Obviously, to accomplish all the jobs, we need to change the
machine's working mode from time to time, but unfortunately, the machine's
working mode can only be changed by restarting it manually. By changing the
sequence of the jobs and assigning each job to a suitable machine, please write
a program to minimize the times of restarting machines.

 
Input
The input file for this program consists of several
configurations. The first line of one configuration contains three positive
integers: n, m (n, m < 100) and k (k < 1000). The following k lines give
the constrains of the k jobs, each line is a triple: i, x, y.

The input
will be terminated by a line containing a single zero.

 
Output
The output should be one integer per line, which means
the minimal times of restarting machine.
 
Sample Input
5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
0
 
Sample Output
3
 
Source
 
题目大意:有两台机器A和B,A机器有n种工作方式,B机器有m种工作方式。共有k个任务。每个任务恰好在一条机器上运行。
如果任务在A机器上运行,就需要转换为模式Xi,如果在B机器上运行,就需要转换为模式Yi
每台机器上的任务可以按照任意顺序执行,但是每台机器每转换一次模式需要重启一次。
请合理为每个任务安排一台机器并合理安排顺序,使得机器重启次数尽量少。
 
解题思路:
把机器A的N种模式作为二分图的左部,机器B的M种模式作为二分图的右部,如果某个任务可以使用机器A的模式xi也可以使用机器B的模式yi完成,则连接xi,yi。
题目要求使机器重启的次数要尽量少,又要把所有的任务都执行完,也就可以把题目转换成最小顶点覆盖,根据二分图的性质:最小顶点覆盖=最大匹配数。
详见代码。
 #include <iostream>
#include <cstdio>
#include <cstring> using namespace std; int Map[][],vis[],n,m;
int ok[]; bool Find(int x)
{
for (int i=;i<=m;i++)
{
if (Map[x][i]==&&!vis[i])
{
vis[i]=;
if (ok[i]==-)
{
ok[i]=x;
return true;
}
else
{
if (Find(ok[i])==true)
{
ok[i]=x;
return true;
}
}
}
}
return false;
} int main()
{
int k,i,x,y;
int ans;
while (~scanf("%d",&n))
{
ans=;
memset(Map,,sizeof(Map));
memset(ok,-,sizeof(ok));
if (n==)
break;
scanf("%d%d",&m,&k);
while (k--)
{
scanf("%d%d%d",&i,&x,&y);
//if(x>0&&y>0)
Map[x][y]=;
}
for (int j=;j<=n;j++)
{
memset(vis,,sizeof(vis));
if (Find(j)==true)
ans++;
}
printf ("%d\n",ans);
}
return ;
}

最新文章

  1. log4j 文档
  2. UC浏览器 分享到朋友圈和微信好友 分类: JavaScript 2015-04-28 14:45 615人阅读 评论(1) 收藏
  3. Scala深入浅出实战经典-----002Scala函数定义、流程控制、异常处理入门实战
  4. IIS 出现如下错误:PageHandlerFactory-Integrated”
  5. Jenkins自动部署Tomcat项目
  6. webpack入坑之旅(三)webpack.config入门
  7. 滚动固定TAB在顶部显示
  8. 直播技术资源站 http://lib.csdn.net/base/liveplay/structure
  9. CSS和字符串实现三角形
  10. gO语言的安装和环境变量的配置
  11. python 批量爬取代理ip
  12. ECharts案例教程1
  13. iOS5编程--ARC在工程上的相关设置
  14. BZOJ 1043 下落的圆盘
  15. mysql c haracter
  16. myeclipse6.0安装svn插件
  17. 关于QT中的音频通信问题
  18. [最短路][部分转] P1073 最优贸易
  19. SQL Server 2016 快照代理过程分析
  20. Android开发之漫漫长途 Fragment番外篇——TabLayout+ViewPager+Fragment

热门文章

  1. Thinkphp5的ajax接口实现
  2. 【Docker】- 基本命令
  3. WDCP V3.2面板安装且新增PHP多版本和免费Let&#39;s Encrypt SSL证书
  4. Jetty与Tomcat综合比较
  5. 2011 Multi-University Training Contest 8 - Host by HUST
  6. Elasticsearch Query DSL备忘(1)(Constant score query和Bool Query)
  7. Java异常捕捉
  8. POJ2891:Strange Way to Express Integers——题解
  9. BZOJ5329: [SDOI2018]战略游戏——题解
  10. 从零开始学Linux系统(三)安装CentOS-7及软件包管理操作