引言

在对抗样本综述(二)中,我们知道了几种著名的对抗攻击和对抗防御的方法。下面具体来看下几种对抗攻击是如何工作的。这篇文章介绍FGSM(Fast Gradient Sign Method)。

预备知识

符号函数sign

泰勒展开

当函数\(f(x)\)在点\(x_0\)处可导时,在点\(x_0\)的邻域\(U(x_0)\)内恒有:

\[f(x)=f(x_0)+f'(x_0)*(x-x_0)+o(x-x_0)
\]

因为\(o(x-x_0)\)是一个无穷小量,故有:

\[f(x)≈f(x_0)+f'(x_0)*(x-x_0)
\]

这是在对函数进行局部线性化处理时常用的公式之一。从几何上看,它是用切线近似代替曲线。这样的近似是比较粗糙的,而且只在点的附近才有近似意义。

梯度

梯度是偏导数组成的向量。若有函数\(f(x^{(1)},x^{(2)},x^{(3)})\),则\(f\)在点\(θ_0=[x_0^{(1)},x_0^{(2)},x_0^{(3)}]^T\)处的梯度为:

\[\nabla f_{θ_0}=[\frac{\partial f_{θ_0}}{\partial x^{(1)}}, \frac{\partial f_{θ_0}}{\partial x^{(2)}}, \frac{\partial f_{θ_0}}{\partial x^{(3)}}]^T
\]

一元函数的导数表示函数增加最快的方向,那么梯度表示多元函数值增加最快的方向。

FGSM公式

\[\textbf{x}_{adv}=\textbf{x}+ϵ∗sign(∇_\textbf{x}J(\textbf{x},y,\textbf{θ}))
\]

ϵ为hyperparameter,控制原图像和对抗样本之间的差异程度。(字母加粗表示向量)

在梯度下降法中,我们求损失函数关于权重w、偏移b(统称参数θ)的梯度,然后更新参数,即参数\(\textbf{θ}=\textbf{θ}-η*\nabla_θ J(\textbf{x},y,\textbf{θ})\),η为learning rate。

而在FGSM中,我们用加梯度方向的ϵ倍的方式更新输入。

注意两者的不同:梯度代表函数值增加最快的方向,更新参数时,我们要做的是使损失函数J减小(在输入确定的情况下),因此减去梯度;而获取对抗样本时,我们要做的是使损失函数J增大(在θ确定的情况下),因此增加梯度,但又要控制扰动的大小,因此只取梯度的方向,其大小统一控制为ϵ。

为什么FGSM中要让损失函数增加?因为J 越大,表明预测class概率向量和真实one-hot class向量的距离越大,更有可能使预测器输出错误的label。用数学来解释下,损失函数在输入x附近\(x_{adv}\)处的泰勒展开:

\[J(\textbf{x}_{adv},y,\textbf{θ})=J(\textbf{x},y,\textbf{θ})+\nabla_x J(\textbf{x},y,\textbf{θ})^T*ϵ*sign(∇_\textbf{x}J(\textbf{x},y,\textbf{θ}))
\]

\(ϵ*sign(∇_\textbf{x}J(\textbf{x},y,\textbf{θ}))\)即泰勒展开中的\((x-x_0)\)项。

在上式中,\(\nabla_x J(\textbf{x},y,\textbf{θ})^T*ϵ*sign(∇_\textbf{x}J(\textbf{x},y,\textbf{θ}))\)为非负数,则\(J(\textbf{x}_{adv},y,\textbf{θ})>=J(\textbf{x},y,\textbf{θ})\),说明我们达到了让损失函数增大的目的。

\(\nabla_x J(\textbf{x},y,\textbf{θ})^T*ϵ*sign(∇_\textbf{x}J(\textbf{x},y,\textbf{θ}))\)是非负数,因为:

\[\nabla_x J(\textbf{x},y,\textbf{θ})^T*ϵ*sign(∇_\textbf{x}J(\textbf{x},y,\textbf{θ}))=\nabla_x J(\textbf{x},y,\textbf{θ})^T*ϵ*( ∇_\textbf{x}J(\textbf{x},y,\textbf{θ})/\Vert∇_\textbf{x}J(\textbf{x},y,\textbf{θ})\Vert)
\]
\[=ϵ*\nabla_x J(\textbf{x},y,\textbf{θ})^T*∇_\textbf{x}J(\textbf{x},y,\textbf{θ})/\Vert∇_\textbf{x}J(\textbf{x},y,\textbf{θ})\Vert
\]
\[=ϵ*\Vert∇_\textbf{x}J(\textbf{x},y,\textbf{θ})\Vert^2/\Vert∇_\textbf{x}J(\textbf{x},y,\textbf{θ})\Vert
\]
\[=ϵ*\Vert∇_\textbf{x}J(\textbf{x},y,\textbf{θ})\Vert
\]
\[>=0
\]

FGSM代码

def fgsm(model, loss, eps, softmax=False):
"""
单次FGSM
model为目标模型
loss为传入的损失函数计算函数
eps为限定扰动大小
"""
def attack(img, label):
output = model(img)
if softmax:
error = loss(output, label)
else:
error = loss(output, label.unsqueeze(1).float())
error.backward() # 计算损失函数对输入x的梯度
# clamp()使perturbed_img的各分量在[0,1]区间
perturbed_img = torch.clamp(img + eps * img.grad.data.sign(), 0, 1).detach()
img.grad.zero_()
return perturbed_img return attack def ifgsm(model, loss, eps, iters=4, softmax=False):
# 多次FGSM
def attack(img, label):
perturbed_img = img
perturbed_img.requires_grad = True
for _ in range(iters):
output = model(perturbed_img)
if softmax:
error = loss(output, label)
else:
error = loss(output, label.unsqueeze(1).float())
error.backward()
temp = torch.clamp(perturbed_img + eps * perturbed_img.grad.data.sign(), 0, 1).detach()
perturbed_img = temp.data
perturbed_img.requires_grad = True
return perturbed_img.detach() return attack

参考文献

[1] Goodfellow I J , Shlens J , Szegedy C . Explaining and Harnessing Adversarial Examples[J]. Computer Science, 2014.

[2] 为什么函数的导数大于等于零或小于等于零就可以判断函数是增还是减? - Observer的回答 - 知乎 https://www.zhihu.com/question/377992767/answer/1104094160

最新文章

  1. (转载) 利用国内的镜像,加速PIP下载
  2. Cocos2d-x 3.2 学习笔记(五)Sprite Node
  3. Grand Theft Auto V 图形研究(2)
  4. iOS开发——UI篇Swift篇&UIImageView
  5. Cocos2d-x——CocosBuilder官方帮助文档翻译3 动画
  6. Codeforces 380A - Sereja and Prefixes
  7. git config --global core.excludesfile配置gitignore全局文件
  8. C语言中static关键字的作用
  9. C#通过生成ini文件,记住用户关闭程序之前的选择+忽略跨线程检查
  10. SVN-TortoiseSVN安装和常用操作步骤
  11. CF #311 D. Vitaly and Cycle 加最少边形成奇圈
  12. IBATIS的优缺点
  13. linux下设置phantomjs环境变量
  14. Scala高阶函数实践
  15. 二、tableau常用难点操作
  16. 【工具推荐】截图工具 Snipaste
  17. xss基础
  18. Android 移动端数据结构
  19. ABP框架中微服务跨域调用其它服务接口
  20. c#Image.FromFile图形加载异常处理

热门文章

  1. .Net Core with 微服务 - Ocelot 网关
  2. 08.ElementUI 2.X 源码学习:源码剖析之工程化(三)
  3. 图像实例分割:CenterMask
  4. AlexeyAB DarkNet YOLOv3框架解析与应用实践(三)
  5. Torchvision模型微调
  6. 摄像头ISP系统原理(上)
  7. Django OperationalError错误解决
  8. 【SQLite】知识点概述
  9. Java代码优化:使用构造函数和使用一个个setter的效率差别
  10. java处理方法的多个返回值