本文将同步发布于:

题目

题目链接:gym102331B

题意概述

给你一个长度为 \(n\) 的序列 \(a_i\),求一个最长的子序列满足所有子序列中的元素两两满足 \(a_i\oplus a_j\geq x\),其中 \(\oplus\) 表示按位异或。

题解

发现性质

我们发现 \(p\oplus q\geq x\) 这个性质不是很好处理,决定通过研究异或的性质来解决问题。

我们考虑一个数 \(a\),若其满足 \(< x\),那么一定满足下面的情况:

  • 存在一个 \(i\) 满足 \(a\) 与 \(x\) 在 \([i+1,\infty)\) 位上相同,在第 \(i\) 位上有 \(a<x\)。

我们考虑 \(p\oplus q<x\),发现:

对于位置第一个不同的位置 \(i\),必然有 \(x_i=1,p_i=q_i\),而不是 \(p_i\neq q_i\)。

因此我们可以发现,对于三个数 \(a,b,c\),若其满足 \(a\leq b\leq c\),一定有 \(\min\{a\oplus b,b\oplus c\}\leq a\oplus c\)。

动态规划

得到了上面的性质,我们不难发现,如果我们将 \(a\) 从小到大排序,那么异或的最小值一定会出现在子序列的相邻两项之间。

换句话说,我们只需要保证子序列的所有相邻的项的异或 \(\geq x\),我们得到的就是一个合法的子序列。

设 \(f_i\) 表示以 \(i\) 结尾的最长的合法子序列,那么有转移方程:

\[f_i=\max_{a_i\oplus a_j\geq x}\{f_j\}+1
\]

时间复杂度为 \(\Theta(n^2)\)。

数据结构优化 dp

考虑到上面的转移与异或有关,我们不难想到可以利用 01-Trie 来优化转移过程。

具体地,我们在 Trie 上维护子树中 \(f_i\) 的最大值,每次转移时在 Trie 上根据与 \(x\) 的异或值选择左右儿子,如果另一棵子树内的所有值都满足 异或后 \(\geq x\),那么我们更新答案。

时间复杂度为 \(\Theta(n\log_2a)\)。

参考程序

#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
static char buf[100000],*p1=buf,*p2=buf;
inline int read(void){
reg char ch=getchar();
reg int res=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))res=10*res+(ch^'0'),ch=getchar();
return res;
} inline ll readll(void){
reg char ch=getchar();
reg ll res=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))res=10*res+(ch^'0'),ch=getchar();
return res;
} const int MAXN=3e5+5;
const int MAXLOG2A=60;
const int mod=998244353; inline int add(reg int a,reg int b){
a+=b;
return a>=mod?a-mod:a;
} inline int sub(reg int a,reg int b){
a-=b;
return a<0?a+mod:a;
} inline int fpow(reg int x,reg int exp){
reg int res=1;
while(exp){
if(exp&1)
res=1ll*res*x%mod;
x=1ll*x*x%mod;
exp>>=1;
}
return res;
} int n;
ll x;
ll a[MAXN]; namespace Trie{
const int MAXSIZE=MAXN*50;
struct Node{
int ch[2];
int sum;
#define ch(x) unit[(x)].ch
#define sum(x) unit[(x)].sum
};
int tot;
Node unit[MAXSIZE];
inline void Init(void){
tot=1;
return;
}
inline void insert(reg ll x,reg int val){
reg int p=1;
for(reg int i=MAXLOG2A-1;i>=0;--i){
reg int c=(x>>i)&1;
if(!ch(p)[c])
ch(p)[c]=++tot;
sum(p)=add(sum(p),val);
p=ch(p)[c];
}
sum(p)=add(sum(p),val);
return;
}
inline int query(reg ll v){
reg int p=1;
reg int res=0;
for(reg int i=MAXLOG2A-1;i>=0;--i){
reg int cv=(v>>i)&1,cx=(x>>i)&1;
if(!cx)
res=add(res,sum(ch(p)[!cv]));
p=ch(p)[cx^cv];
}
if(p)
res=add(res,sum(p));
return res;
}
#undef ch
#undef sum
} int main(void){
n=read(),x=readll();
for(reg int i=0;i<n;++i)
a[i]=readll();
sort(a,a+n);
Trie::Init();
reg int ans=0;
for(reg int i=0;i<n;++i){
reg int val=add(1,Trie::query(a[i]));
Trie::insert(a[i],val);
ans=add(ans,val);
}
printf("%d\n",ans);
return 0;
}

最新文章

  1. jackson官方快速入门文档
  2. 我最常用的几个Xcode快键键
  3. dev uploadcontrol 上传图片
  4. JVM-并发-线程安全与锁优化
  5. centos启用ftp功能
  6. Ubuntu 及衍生版本用户如何安装 SmartGit/HG
  7. win10启动文件夹:
  8. Going Home (hdu 1533 最小费用流)
  9. 在windows 7搭建xcode开发环境
  10. 【翻译自mos文章】DBA_JOBS 和 DBA_JOBS_RUNNING 不同的结果的解释
  11. QSqlQueryModel的实例操作
  12. android监听键盘
  13. 用PE安装操作系统时:无法创建新的系统分区 也无法定位现有系统分区 的解决办法
  14. C# 内置 DateTime类详解
  15. svn上传*.so文件
  16. linux 用户管理命令
  17. java的局部变量和成员变量以及区别
  18. Java初转型-SSM配置文件
  19. android studio svn 创建分支
  20. 51Nod1526 分配笔名

热门文章

  1. PowerShell-3.多线程
  2. WireShark之抓telnet密码
  3. lower_bound和upper_bound的实现
  4. Java GUI学习,贪吃蛇小游戏
  5. .Net core Worker Service 扩展库
  6. zip密码破解小脚本
  7. 解析CentOS 8上的Xrdp服务器安装
  8. 联想INTEL X86台式机 用光驱启动 usb光驱启动
  9. 强哥JavaScript学习笔记
  10. 关于jmeter线程组和循环次数的设置