本文senlie原版的,转载请保留此地址:http://blog.csdn.net/zhengsenlie

set

------------------------------------------------------------------------



全部元素都会依据元素的键值自己主动被排序。

不能够通过 set 的迭代器改变 set 的元素值。由于 set 元素值就是其键值。关系到 set 元素的排列规则。

set<T>::iterator 被定义为底层 RB-tree 的 const_iterator,杜绝写入操作

标准的 STL set 以 RB-tree 为底层机制,就像 stack 以 deque 为底层机制一样



multiset和 set 基本一样。仅仅只是在插入的时候调用的是底层 RB-tree 的 insert_equal(),同意元素反复



演示样例:

struct ltstr
{
bool operator()(const char* s1, const char* s2) const
{
return strcmp(s1, s2) < 0;
}
}; int main()
{
const int N = 6;
const char* a[N] = {"isomer", "ephemeral", "prosaic",
"nugatory", "artichoke", "serif"};
const char* b[N] = {"flat", "this", "artichoke",
"frigate", "prosaic", "isomer"}; set<const char*, ltstr> A(a, a + N);
set<const char*, ltstr> B(b, b + N);
set<const char*, ltstr> C; cout << "Set A: ";
copy(A.begin(), A.end(), ostream_iterator<const char*>(cout, " "));
cout << endl;
cout << "Set B: ";
copy(B.begin(), B.end(), ostream_iterator<const char*>(cout, " "));
cout << endl; cout << "Union: ";
set_union(A.begin(), A.end(), B.begin(), B.end(),
ostream_iterator<const char*>(cout, " "),
ltstr());
cout << endl; cout << "Intersection: ";
set_intersection(A.begin(), A.end(), B.begin(), B.end(),
ostream_iterator<const char*>(cout, " "),
ltstr());
cout << endl; set_difference(A.begin(), A.end(), B.begin(), B.end(),
inserter(C, C.begin()),
ltstr());
cout << "Set C (difference of A and B): ";
copy(C.begin(), C.end(), ostream_iterator<const char*>(cout, " "));
cout << endl;
}

源代码:

#ifndef __SGI_STL_INTERNAL_SET_H
#define __SGI_STL_INTERNAL_SET_H __STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif #ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Key, class Compare = less<Key>, class Alloc = alloc>
#else
template <class Key, class Compare, class Alloc = alloc>
#endif
class set {
public:
// typedefs:
//key_type 和 value_type 的类型是一样的
typedef Key key_type;
typedef Key value_type;
//key_compare 和 value_compare 也用到了同一个比較函数
typedef Compare key_compare;
typedef Compare value_compare;
private:
//底层採用红黑树来实现 set --> 參见 Effective C++ ,这是利用了 Composition 的 is-implimented-in-terms-of 的功能
typedef rb_tree<key_type, value_type,
identity<value_type>, key_compare, Alloc> rep_type;
rep_type t; // red-black tree representing set
public:
typedef typename rep_type::const_pointer pointer;
typedef typename rep_type::const_pointer const_pointer;
typedef typename rep_type::const_reference reference;
typedef typename rep_type::const_reference const_reference;
//set 的 iterator 定义为红黑树的 const_iterator,这表示 set 的迭代器无法运行写入操作。
//这是由于 set 的元素有一定次序安排,不同意用户在随意处进行写入操作
typedef typename rep_type::const_iterator iterator;
typedef typename rep_type::const_iterator const_iterator;
typedef typename rep_type::const_reverse_iterator reverse_iterator;
typedef typename rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename rep_type::size_type size_type;
typedef typename rep_type::difference_type difference_type; // allocation/deallocation
// set 一定要使用 RB-tree 的 insert-unique() 。这样当要插入
//已经存在的键值时,会选择忽略 set() : t(Compare()) {} // 传递 Compare() 产生的函数对象给底层的红黑树作为初始化时设定的比較函数
explicit set(const Compare& comp) : t(comp) {} #ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
set(InputIterator first, InputIterator last)
: t(Compare()) { t.insert_unique(first, last); } template <class InputIterator>
set(InputIterator first, InputIterator last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); }
#else
set(const value_type* first, const value_type* last)
: t(Compare()) { t.insert_unique(first, last); }
set(const value_type* first, const value_type* last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); } set(const_iterator first, const_iterator last)
: t(Compare()) { t.insert_unique(first, last); }
set(const_iterator first, const_iterator last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); }
#endif /* __STL_MEMBER_TEMPLATES */ set(const set<Key, Compare, Alloc>& x) : t(x.t) {}
set<Key, Compare, Alloc>& operator=(const set<Key, Compare, Alloc>& x) {
t = x.t; // 调用了底层红黑树的 operator= 函数
return *this;
} //下面全部的 set 操作行为,RB-tree 都已提供,所以 set 仅仅要调用就可以
// accessors: key_compare key_comp() const { return t.key_comp(); }
value_compare value_comp() const { return t.key_comp(); }
iterator begin() const { return t.begin(); }
iterator end() const { return t.end(); }
reverse_iterator rbegin() const { return t.rbegin(); }
reverse_iterator rend() const { return t.rend(); }
bool empty() const { return t.empty(); }
size_type size() const { return t.size(); }
size_type max_size() const { return t.max_size(); }
void swap(set<Key, Compare, Alloc>& x) { t.swap(x.t); } // insert/erase
typedef pair<iterator, bool> pair_iterator_bool;
pair<iterator,bool> insert(const value_type& x) {
pair<typename rep_type::iterator, bool> p = t.insert_unique(x);
return pair<iterator, bool>(p.first, p.second);
}
iterator insert(iterator position, const value_type& x) {
typedef typename rep_type::iterator rep_iterator;
return t.insert_unique((rep_iterator&)position, x);
}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert(InputIterator first, InputIterator last) {
t.insert_unique(first, last);
}
#else
void insert(const_iterator first, const_iterator last) {
t.insert_unique(first, last);
}
void insert(const value_type* first, const value_type* last) {
t.insert_unique(first, last);
}
#endif /* __STL_MEMBER_TEMPLATES */
void erase(iterator position) {
typedef typename rep_type::iterator rep_iterator;
t.erase((rep_iterator&)position);
}
size_type erase(const key_type& x) {
return t.erase(x);
}
void erase(iterator first, iterator last) {
typedef typename rep_type::iterator rep_iterator;
t.erase((rep_iterator&)first, (rep_iterator&)last);
}
void clear() { t.clear(); } // set operations: iterator find(const key_type& x) const { return t.find(x); }
size_type count(const key_type& x) const { return t.count(x); }
iterator lower_bound(const key_type& x) const {
return t.lower_bound(x);
}
iterator upper_bound(const key_type& x) const {
return t.upper_bound(x);
}
pair<iterator,iterator> equal_range(const key_type& x) const {
return t.equal_range(x);
}
friend bool operator== __STL_NULL_TMPL_ARGS (const set&, const set&);
friend bool operator< __STL_NULL_TMPL_ARGS (const set&, const set&);
}; template <class Key, class Compare, class Alloc>
inline bool operator==(const set<Key, Compare, Alloc>& x,
const set<Key, Compare, Alloc>& y) {
return x.t == y.t;
} template <class Key, class Compare, class Alloc>
inline bool operator<(const set<Key, Compare, Alloc>& x,
const set<Key, Compare, Alloc>& y) {
return x.t < y.t;
} #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template <class Key, class Compare, class Alloc>
inline void swap(set<Key, Compare, Alloc>& x,
set<Key, Compare, Alloc>& y) {
x.swap(y);
} #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_SET_H */ // Local Variables:
// mode:C++
// End:

版权声明:本文博主原创文章。博客,未经同意不得转载。

最新文章

  1. getSupportFragmentManager要用在FragmentActivity及其子类中
  2. ResultSet 结果集带回来的一些信息
  3. 【windows】跑大型程序时不要休眠和睡眠
  4. NOIP 2006 解题报告
  5. Xcode7免证书真机调试实践
  6. LA 6047 Perfect Matching 字符串哈希
  7. git stash 暂存当前修改
  8. ofbiz进阶之框架配置文件指导
  9. poj3254
  10. LightOJ 1341 Aladdin and the Flying Carpet 数学
  11. inno setup 多语言安装
  12. 11-C#反射机制
  13. X-003 FriendlyARM tiny4412 uboot移植之添加相应目录文件
  14. 浏览器兼容汇总(css+js)
  15. CDIF:基于JSON的SOA软件框架
  16. phpcms列表页内容如何替换?
  17. Muduo阅读笔记--base(二)
  18. win32程序之子窗口编程
  19. MyBatis-Plus初步使用
  20. 「SHOI2015」(LOJ2038)超能粒子炮・改

热门文章

  1. sgu 286. Ancient decoration(最小环覆盖)
  2. HDU2647-Reward(拓扑排序)
  3. NSPredicate的用法
  4. C#中使用gRPC
  5. Naive Bayes Classification
  6. 变化App.config其中值,并保存
  7. Firefox双击关闭标签
  8. [cocos2dx笔记008]cocos2d 用luabridge手动绑定类
  9. POJ 3684 Priest John&amp;#39;s Busiest Day 2-SAT+输出路径
  10. linux下&amp;quot;=&amp;quot;号与&amp;quot;==&amp;quot;号