ACM数论——欧几里得与拓展欧几里得


欧几里得算法:

  欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。

  基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。

int gcd(int a,int b)
{
return b ? gcd(b,a%b) : a;
}

扩展欧几里德算法:

  基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。

  证明:设 a>b。

  1. 显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;

  2. ab!=0 时

  设 ax1+by1=gcd(a,b);

  bx2+(a mod b)y2=gcd(b,a mod b);

  根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);

  则:ax1+by1=bx2+(a mod b)y2;

  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;

  根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;

这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.

   上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。

int exgcd(int a,int b,int &x,int &y)
{
if(b==)
{
x=;
y=;
return a;
}
int r=exgcd(b,a%b,x,y);
int t=x;
x=y;
y=t-a/b*y;
return r;
}

扩展欧几里德算法的应用主要有以下三方面:

(1)求解不定方程;

(2)求解模线性方程(线性同余方程);

(3)求解模的逆元;

  用扩展欧几里得算法解不定方程ax+by=c:

bool linear_equation(int a,int b,int c,int &x,int &y)
{
int d=exgcd(a,b,x,y);
if(c%d)
return false;
int k=c/d;
x*=k; y*=k; //求得的只是其中一组解
return true;
}

  求出解之间的间隔,那么就可以求出模的线性方程的解集:

bool modular_linear_equation(int a,int b,int n)
{
int x,y,x0,i;
int d=exgcd(a,n,x,y);
if(b%d)
return false;
x0=x*(b/d)%n; //特解
for(i=;i<d;i++)
printf("%d\n",(x0+i*(n/d))%n);
return true;
}

  用扩展欧几里得求解逆元是一种常用的方法

你是否经常遇到过类似的问题 ,(A/B)%Mod  。此时,要先计算B%Mod的逆元p, 其实他是用逆元解决的典型题目。但是在使用逆元时候你需满足一下两个条件才能保证得到正确的结果。

  1.  gcd(B,Mod) == 1,显然素数肯定是有逆元的。
  2.  这里B需要是A的因子

  下面就给出扩展欧几里得的典型式子:a*x + b*y = 1    。求得x即为a%b的逆元; y即为b%a的逆元。

另一种方法是:p = b^(Mod-2) % Mod,因为b^(Mod-1)%Mod = 1(这里需要Mod为素数),因为这种方法不常用,因此这里不再详细介绍。

下面就给出求解逆元的模版(代码非原创)

扩展欧几里德求逆元模板:
    #include<iostream>
#define __int64 long long
using namespace std;
//举例 3x+4y=1 ax+by=1
//得到一组解x0=-1,y0=1 通解为x=-1+4k,y=1-3k
inline __int64 extend_gcd(__int64 a,__int64 b,__int64 &x,__int64 &y)//ax+by=1返回a,b的gcd,同时求的一组满足题目的最小正整数解
{
__int64 ans,t;
if(b==){x=;y=;return a;}
ans=extend_gcd(b,a%b,x,y);t=x;x=y;y=t-(a/b)*y;
return ans;
}
//(a/b)%mod=c 逆元为p,(p*b)%mod=1
//(a/b)*(p*b)%mod=c*1%mod=c
// (p*b)%mod=1 等价于 p*b-(p*b)/mod*mod=1其中要求p,b已知 等价于 ax+by=1
//其中x=p(x就是逆元),y=p/mod,a=b,b=b*mod 那么调用extend_gcd(b,b*mod,x,y)即可求(a/b)%mod的逆元等价于a*p%mod
int main()
{
__int64 a,b,x,y,c,gcd,mod,p;//ax+by=c
while(cin>>a>>b>>c)
{
gcd=extend_gcd(a,b,x,y);
cout<<x<<" "<<y<<endl;
if(c%gcd){cout<<"无解!"<<endl;continue;}
cout<<"x="<<x*c/gcd<<" y="<<y*c/gcd<<endl;
}
return ;
}
    void extend_Euclid(int a, int b)
{
if(b==)
{
x = ;
y = ;
return;
}
extend_Euclid(b, a%b);
int t = x;
x = y;
y = t - a/b*y;
} int main()
{
//b%mod的逆元
int b,mod;
while(cin>>b>>mod){
// x=0;y=0;
extend_Euclid(b,mod);
cout<<(x%mod+mod)%mod<<endl;
}
return ;
}

最新文章

  1. FFT NNT
  2. Shell 脚本实现随机抽取班级学生
  3. (转)struts2:数据校验,通过XWork校验框架实现(validation.xml)
  4. Ubuntu install g++
  5. Spring事务配置的五种方式(转载)
  6. 【GIT】使用Git命令窗口将本地工程提交至远程GitHub
  7. HTML5的五种客户端离线存储方案
  8. iOS 让启动页面延迟的方法
  9. webkit中DOM 事件有多少
  10. 【Python备忘】python判断文件和文件夹是否存在
  11. 混合使用Azure LB和ILB访问相同web服务(3)
  12. 一种基于FSIM对视频编码图像质量客观评价的方法
  13. shim &amp; polyfill
  14. 4、原生jdbc链接数据库常用资源名
  15. flask-sqlalchemy 一对一,一对多,多对多操作
  16. java远程工具类
  17. 【BZOJ】3139: [Hnoi2013]比赛
  18. vim打开多窗口、多文件之间的切换
  19. [leetcode]689. Maximum Sum of 3 Non-Overlapping Subarrays三个非重叠子数组的最大和
  20. UIWebView如何加载本地图片

热门文章

  1. July 25th 2017 Week 30th Tuesday
  2. Kill占用指定端口的进程的方法
  3. hdu-3388 Coprime---容斥定理&amp;&amp;DFS版
  4. Github注册
  5. web页面显示当前系统时间并定时刷新
  6. BZOJ3790:神奇项链(Manacher)
  7. 使用js接收ajax解析的json再拼成一个自己想要的json
  8. HDU4825 Xor Sum
  9. c++构造函数详解(转)
  10. 如何在运行jar指定使用的JDK