【论文标题】A review on deep learning for recommender systems: challenges and remedies  (Artificial Intelligence Review,201906)

【论文作者】Zeynep Batmaz 1 · Ali Yurekli 1 · Alper Bilge 1 · Cihan Kaleli 1

【论文链接】Paper(37-pages // Single column)

=======================<札记非FY> (以下着重 mark 关于CNN的推荐系统!)=========================

4  Perspectival synopsis of deep learning within recommender systems
4.1 推荐系统的深度学习技术
4.1.1 推荐系统的限制玻尔兹曼机
4.1.2 推荐系统的深度信念网络
4.1.3 推荐系统的自动编码器
4.1.4 推荐系统的循环神经网络
4.1.5 推荐系统的卷积神经网络
CNN使用至少一个层的卷积,这类神经网络用于特定的任务,如图像识别和对象分类。 推荐系统也受益于CNNs。
 
1)Oordet al.(2013)利用CNNs从音频数据中提取无法从用户反馈中获得的隐含因子。
2)Shenet al.(2016)利用CNNs从文本数据中提取隐含因子。
3)Zhou等(2016)提取视觉特征,目的是生成用户的视觉兴趣档案,以供推荐。
4)Lei等(2016)利用CNNs提取图像的隐含特征,目的是将特征和用户偏好映射到相同的隐含空间。
5)使用CNNs提取的文本信息的语义意义也被用于推荐系统,特别是上下文感知的推荐系统,以提供更有资格的推荐(Wu等人)。
 
因此,CNNs主要用于从数据中提取潜在因素和特征,尤其是从图像和文本中提取,以用于推荐。
 
 
4.1.6 其他技术
 
4.2  对推荐系统的挑战的补救措施
4.2.1 提高精度的解决方案
4.2.2 稀疏性和冷启动问题的解决方案
1)Oord等(2013)利用CNN从音乐音频信号中提取高级特征,处理基于cf的方法中的冷启动问题。
 
2)Shin etal.(2015)也利用边信息处理稀疏性和冷启动问题进行博客推荐。他们将从文本和图像中提取的特征分别与word2vec和CNNs集成到他们提出的增强归纳矩阵补全方法中。
 
3) Shen等(2016)将CNNs提取的隐含因子整合到矩阵因子分解中,利用隐含因子模型处理稀疏性问题。
ShenX,YiB,ZhangZ,ShuJ,LiuH(2016)
Automatic recommendation technology for learning resources with convolutional neural network. 
In:Proceedings of the international symposium on educational technology, Beijing, China, pp 30–34
——是关于书籍推荐领域的, 提出一种在电子学习环境中为学生提供个性化书籍推荐的方法。
 
4) Kim等人(2017)利用CNN从图像中提取特征,旨在缓解标签感知推荐系统中标签的不足。
Kim D, Park C, Oh J, Yu H (2017) Deep hybrid recommender systems via exploiting document context and statistics of items. Inf Sci 417:72–87. https://doi.org/10.1016/j.ins.2017.06.026
 
5)Ebesu和Fang(2017)提出利用深度神经网络从用户的隐式反馈和项目的文本内容信息中学习项目表示。
 
6)Tuan和Phuong(2017)利用3D-CNNs对基于会话的推荐系统中项目的内容信息进行整合,解决稀疏性问题。
 
 
4.2.3 可伸缩性问题的解决方案
 
 
4.3  对推荐领域的认识和普及

4.4  专业的推荐系统和深度学习
4.4.1 动态推荐系统
(几乎无涉及CNN)
4.4.2 上下文感知推荐系统
(各种CNN)
1)Kim等人(2017)提出利用CNNs从项目的文本描述中获取上下文信息。
Kim D, Park C, Oh J, Yu H (2017) Deep hybrid recommender systems via exploiting document context and statistics of items. Inf Sci 417:72–87. https://doi.org/10.1016/j.ins.2017.06.026
2)
 
4.4.3 Tag-aware recommender systems 标签感知推荐系统
 
6  见解和讨论
 
(4)CNNs和dbns主要用于文本、音频和图像输入的特征工程。所提取的特征可以用于基于内容的过滤技术,也可以作为CF中的边信息。
 
 

最新文章

  1. 简单快捷好用的vim配置和终端配置推荐
  2. Java Lambda表达式入门
  3. fragment切换刷新 及下拉刷新
  4. Two&#39;s complement
  5. IOS 获取网络图像尺寸 更改 图像色彩值 什么一套方法灰色
  6. Java 递归算法
  7. ABP架构解析
  8. 了解 Spring Boot AutoConfiguration
  9. HTML5原生拖拽/拖放(drag &amp; drop)详解
  10. HUAWEI USG6000系列 &amp; NGFW Module V100R001 典型配置案例
  11. python 文本特征提取 CountVectorizer, TfidfVectorizer
  12. python QT 编程之路
  13. 在Hanlp词典手动添加未登录词的方式介绍
  14. 使用Maven创建(eclipse)Java项目
  15. 进程和线程(3)-ThreadLocal
  16. Android自己定义ViewGroup(二)——带悬停标题的ExpandableListView
  17. Android 收集已发布程序的崩溃信息
  18. SQLSERVER中统计所有表的记录数
  19. IEPNGFix 解决IE6支持PNG透明问题
  20. warning LNK4099: PDB 原因及解决方案

热门文章

  1. Golang Testing单元测试指南
  2. C#下的时间测试(用于计算方法执行时间)
  3. Android自定义圆角矩形进度条2
  4. 图解Java数据结构之单链表
  5. python基础-内置函数 isinstance() 与 issubclass()
  6. 【原创】Airflow 简介&amp;如何部署一个健壮的 apache-airflow 调度系统
  7. MySQL Tools 之 mysql.server 脚本运用
  8. qos-server can not bind localhost:22222, dubbo version: 2.6.0, current host: 127.0.0.1【问题解决】
  9. ezdml设计数据库
  10. HTTP 2.0 之压测工具 Jmeter