1、各种队列

我们已经学习了队列这种存取值的方法,我们以前使用的队列是可以进行进程间通信的(IPC),但是今天学习的这两种队列是不能进行进程间通信的,只能进行线程间的通信

这两种队列分别是先进后出式队列Lifoqueue、优先级队列PriorityQueue

from queue import LifoQueue

lf = LifoQueue()
lf.put(111)
lf.put(222)
lf.put(333)

print(lf.get())
print(lf.get())
print(lf.get())

#
#
#
# 取值规则为先进后出
from queue import PriorityQueue

pq = PriorityQueue()
pq.put((1,2))
pq.put((1,3))
pq.put((1,4))

print(pq.get())
print(pq.get())
print(pq.get())

# (1,2)
# (1,3)
# (1,4)
# 规则是按照优先级进行对比,会先对比容器中的第一个元素,如果第一个一样则对比第二个元素,直至排出优先级
# 最高的那个元素

扩展知识: 大小比较的本质

关于为什么有的对象可以进行大小的比较,有的对象不能进行大小的比较

https://blog.csdn.net/zhangshuaijun123/article/details/82149056

2、Event事件

import time
from threading import Event, Thread

event = Event()

flag = False

def sever():
print("正在开启服务器...")
time.sleep(3)
print("服务器开启成功")
# global flag
# flag = True
event.set()


def client():
# print("正在连接...")
# if flag:
event.wait()
print("连接成功")
# else:
# print("连接失败")

# 假如我们想要在 服务器开启成功后在进行连接,用这种办法肯定不行,那么就需要在开启成功后添加一个标志,
# 只有在标志修改后直接进行后续步骤
# event就可以创建这种标志

t = Thread(target=sever)
t1 = Thread(target=client)
t.start()
t1.start()

print("over")

Event事件的作用是进行进程间通讯,将进程间进行状态的同步,我们可以在某个点设置event.set(),那么当其前方代码执行完毕后,就会发出一个信号,使得event.wait()方法不再阻塞,进而执行wait()之后的代码

3、协程

在我们使用多线程实现并发的过程中,如果并发量比较大,那么我们应该如何处理?

此时你可能会说开启多线程,但是如果并发量达到了百万或者千万级别,那应该如何呢?

此时使用多线程不可能实现,但是如果使用多进程+多线程可以进行处理,但是如果更多呢?

因为进程以及线程的开启数量是有限的,如果开启过多可能会造成系统不稳定,那么此时可以使用我们今天使用的内容 —— 协程

学习协程之前我们首先需要复习一下什么是并发,并发指的是在同一个时间段,看起来有几个进程在同时运行,但是实际上同一时间只有一个线程在执行,我们以前学了多线程实现并发,那么一个线程可不可以实现并发呢?

首先来看一下我们已经学过的生成器

import time

def func():
a = 1
for i in range(100000000):
a += 1
# yield


def func2():
# s = func()
a = 1
for i in range(100000000):
a += 1
# next(s)


st = time.time()
func()
func2()
print(time.time() - st)
# 在使用串行执行时,耗时为15秒,在使用生成器时,耗时为30秒

我们通过上述生成器的例子可以看出,在同一个进程中可以同时并发的执行两个函数,这已经实现了并发,但是,在上述例子中,并发虽然实现了,但是程序的执行效率却一点都没有提高,反而执行效率都降低了,

上述的例子,我们进行的都是数据的计算,那么如果我们将数据的计算换成IO操作呢?

可能你会想,实现IO操作也不行啊,因为即使达到了并行的效果,但是我们的程序在执行到IO操作时,还是会等待,只有在IO操作执行完毕才会进行后续的取值工作,这时候还是在进行等待,而且我们在进行多个函数之间的切换时,要写好多next取值的代码,整体逻辑也不清晰,那么有没有一种方法对这些进行了改变呢?

我们烦恼的问题,前人也遇到了,而且他们也进行了处理,有一个包叫做gevent,他可以帮我们处理这些烦人的问题

from gevent import monkey
monkey.patch_all()

import time
import gevent



def func():
print("func1 run")
time.sleep(3)
print("func1 over")

def func2():
print("func2 run")
time.sleep(5)
print("func2 over")


g1 = gevent.spawn(func)
g2 = gevent.spawn(func2)

gevent.joinall([g1,g2])

使用这个包可以将我们烦恼的问题全部解决,首先是进行等待的问题,在使用这个包进行单线程并发时,当一个函数遇到了IO操作,这个方法不会进行等待,而是直接切换到其他方法继续执行,因为对于操作系统来说最小的执行单位是线程,所以一个线程如果不进行IO操作,那么只有在这个时间片用完之后在进行进行切换,直接提高了我们使用CPU的时间,当我们使用gevent进行单线程并发时,如果遇到IO就切换到同线程下的其它函数进行执行,那么操作系统就不会将CPU切走,进而提高我们的程序对于CPU的使用

那么这个模块是如何实现这个不等待直接切换执行呢?

因为在这些IO操作中大部分都封装了不等待的方法,当时这些方法默认时开启的,如果设置为False,那么这些模块在进行执行时如果遇到了这些要进行IO操作,如果没有值就会报错,那么再将这些错误进行捕捉,再在except中进行切换就可以了

与此同时,新的疑问出现了,他是怎么将系统中的错误进行捕捉的呢?在我们的代码中并没有对这些错误进行处理,而且我们只是将这些函数作为参数传递给了这个模块进行执行

当我们将其中的monkey.patch_all()代码进行删除后,这些代码又会按照原来的执行方式进行执行了,这是因为这个monkey方法对这些产生阻塞的方法进行了偷梁换柱,已经将这些阻塞的方法换成了自己的代码,所以要将这段代码放在最上方,先导入其中的方法

4、猴子补丁

猴子补丁的原理是重新写带有阻塞的类中的方法,我们在使用猴子补丁时实际上已经把这些方法进行了覆盖

import json

import gevent
from gevent import monkey
monkey.patch_all()

def func(args):
print("这是一个假的方法")

def func1(args):
print("这是一个假的方法")

def my_patch():
json.load = func
json.loads = func1


my_patch()

json.loads("aaa")
json.load("aaa")

# 这是一个假的方法
# 这是一个假的方法

使用猴子补丁可以利用名称空间的查找规格将系统的方法屏蔽,将我们定义的方法覆盖覆盖原方法,然后再进行调用

最新文章

  1. CentOS 7编译安装gcc5.3碰到的坑
  2. 【转】 void与void*详解
  3. OpenGL2.0及以上版本中glm,glut,glew,glfw,mesa等部件的关系
  4. java的io读取
  5. 推荐个Java代码质量检测的利器 —— FindBugs
  6. android SharedPreferences 使用
  7. iOS开发中常见的语句@synthesize obj = _obj 的意义详解
  8. lamp环境中的/到底是指的网站根目录还是linux的根
  9. poj 1087.A Plug for UNIX (最大流)
  10. Windows计划任务 未能启动
  11. C#中System.Globalization.DateTimeFormatInfo.InvariantInfo怎么用
  12. foreach是怎么实现遍历的
  13. SQL Server 事务日志文件已满,收缩日志文件(9002)
  14. C#字符串转二进制、二进制转字符串
  15. 关于TabLayout与ViewPager在Fragment中嵌套Fragment使用或配合使用的思考
  16. 2019-04-26-day041-数据库的索引
  17. js基础梳理-关于this常见指向问题的分析
  18. Java 如何实现线程间通信?(notify、join、CountdownLatch、CyclicBarrier、FutureTask、Callable )
  19. [转]Bootstrap table 分页 In asp.net MVC
  20. PHP反序列漏洞学习

热门文章

  1. Kafka中的消息是否会丢失和重复消费(转)
  2. sqlalchemy 基本操作
  3. MFC 画笔CPen、画刷CBrush
  4. 装饰者模式(Decorator)---结构型
  5. Enable file editing in Visual Studio's debug mode
  6. Splay - restudy
  7. 0和5 (51Nod)
  8. php-m 与 phpinfo 不一致的解决办法
  9. 14.链表中倒数第k个结点 Java
  10. 13.调整数组顺序使奇数位于偶数前面 Java