\(\mathcal{Description}\)

  Link.

  令 \(f\) 为 \(\text{Fibonacci}\) 数列,给定 \(\{a_n\}\),求:

\[\operatorname{lcm}\{f_{a_1},f_{a_2},\cdots,f_{a_n}\}\bmod(10^9+7)
\]

  \(n\le5\times10^4\),\(a_i\le10^6\)。

\(\mathcal{Solution}\)

  你得知道:

\[\gcd(f_i,f_j)=f_{\gcd(i,j)}\tag1
\]
\[\operatorname{lcm}(S)=\prod_{T\subseteq S\land T\not=\varnothing}\gcd(T)^{(-1)^{|T|+1}}\tag2
\]

  \((1)\) 老经典的结论了;\((2)\) 本质上是一个 \(\text{Min-Max}\) 反演。

  记 \(F=\{f_{a_n}\},S=\{a_n\},m=\max(S)\),开始推导:

\[\begin{aligned}
\operatorname{lcm}(F)&=\prod_{T\subseteq F\land T\not=\varnothing}\gcd(T)^{(-1)^{|T|+1}}\\
&=\prod_{T\subseteq S\land T\not=\varnothing}f_{\gcd(T)}^{(-1)^{|T|+1}}\\
&=\prod_{d=1}^mf_d^{\sum_{T\subseteq S\land T\not=\varnothing\land\gcd(T)=d}(-1)^{|T|+1}}
\end{aligned}
\]

  记 \(f_d\) 的指数为 \(g(d)\),令 \(h(d)=\sum_{T\subseteq S\land T\not=\varnothing\land d|\gcd(T)}(-1)^{|T|+1}=1-\sum_{T\subseteq S\land d|\gcd(T)}(-1)^{|T|}\)。设有 \(c_d\) 个 \(a_x\) 是 \(d\) 的倍数,那么:

\[\sum_{T\subseteq S\land d|\gcd(T)}(-1)^{|T|}=\sum_{s=0}^{c_d}\binom{c_d}s(-1)^s
\]

  二项式展开逆用,后式为 \((1-1)^{c_d}=[c_d=0]\),所以 \(h(d)=[c_d\not=0]\)。最后利用 \(h\) 反演出 \(g\):

\[g(d)=\sum_{d|n}h(n)\mu(\frac{n}d)
\]

  \(\mathcal O(n\ln n)\) 把 \(g\) 求出来就好。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>

inline int rint () {
int x = 0; int f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
} inline void wint ( int x ) {
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
} const int MAXN = 5e4, MAXA = 1e6, MOD = 1e9 + 7;
int pn, pr[MAXA + 5], mu[MAXA + 5];
int n, a[MAXN + 5], fib[MAXA + 5], indx[MAXA + 5];
bool buc[MAXA + 5], vis[MAXA + 5]; inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1; b = ( b % ( p - 1 ) + ( p - 1 ) ) % ( p - 1 );
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
} inline void init ( const int n ) {
mu[1] = 1;
for ( int i = 2; i <= n; ++ i ) {
if ( !vis[i] ) mu[pr[++ pn] = i] = -1;
for ( int j = 1, t; j <= pn && ( t = i * pr[j] ) <= n; ++ j ) {
vis[t] = true;
if ( !( i % pr[j] ) ) break;
mu[t] = -mu[i];
}
}
fib[1] = 1;
for ( int i = 1; i <= n; ++ i ) {
if ( i > 1 ) fib[i] = ( fib[i - 1] + fib[i - 2] ) % MOD;
for ( int j = i; j <= n; j += i ) {
buc[i] |= buc[j];
}
}
for ( int i = 1; i <= n; ++ i ) {
for ( int j = 1, t = n / i; j <= t; ++ j ) {
indx[i] += mu[j] * buc[i * j];
}
}
} int main () {
n = rint ();
int mxa = 0;
for ( int i = 1; i <= n; ++ i ) {
buc[a[i] = rint ()] = true;
if ( mxa < a[i] ) mxa = a[i];
}
init ( mxa );
int ans = 1;
for ( int i = 1; i <= mxa; ++ i ) {
ans = 1ll * ans * qkpow ( fib[i], indx[i] ) % MOD;
}
wint ( ans ), putchar ( '\n' );
return 0;
}

\(\mathcal{Details}\)

  对 \(\text{Min-Max}\) 要敏感一点呐……

最新文章

  1. 【poj1737】 Connected Graph
  2. Windows &amp; Office完美结合,助力办公
  3. BZOJ3757 : 苹果树
  4. SharePoint 2013 Nintex Workflow 工作流帮助(六)
  5. 为laravel分页样式制定class
  6. Linux查看系统信息
  7. Android混淆配置文件规范
  8. java web.xml listener servlet 和filter加载顺序
  9. 更改oracle字符集
  10. node中package.json全方面解析
  11. requests_模拟登录知乎
  12. MAC下用homebrew安装及配置apache、php和mysql
  13. 和菜鸟一起学linux之linux性能分析工具oprofile移植
  14. nginx匹配规则说明以及匹配的优先级
  15. mongo-2ds索引对超过半球范围的适用性测试
  16. javabean的特点
  17. MVC架构介绍——自运行任务
  18. Selenium基本使用(十三)测试中常见问题
  19. IDEA中maven的依赖jar包报红
  20. js高级-原型链

热门文章

  1. java 多态 总结
  2. 【从小白到专家】收官!Istio技术实践之九:路由控制与灰度发布
  3. testng 的常用注解
  4. 【Java】获取两个字符串中最大相同子串
  5. 顺序表-Go语言实现
  6. VictoriaMerics学习笔记(1):翻译官方广告
  7. 返回值Object-注解驱动作用
  8. GoLang设计模式20 - 组合模式
  9. 前端基础之SCC
  10. CSS之常见布局|常用单位|水平垂直居中