适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了。 我们约定有向加权图G不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点。

算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止

期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。

实现方法:

  建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为0)。然后执行松弛操作,用队列里有的点作为起始点去刷新到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列为空。

判断有无负环:
  如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)

首先建立起始点a到其余各点的
最短路径表格

首先源点a入队,当队列非空时:
 1、队首元素(a)出队,对以a为起始点的所有边的终点依次进行松弛操作(此处有b,c,d三个点),此时路径表格状态为:

在松弛时三个点的最短路径估值变小了,而这些点队列中都没有出现,这些点
需要入队,此时,队列中新入队了三个结点b,c,d

队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e点),此时路径表格状态为:

在最短路径表中,e的最短路径估值也变小了,e在队列中不存在,因此e也要
入队,此时队列中的元素为c,d,e

队首元素c点出队,对以c为起始点的所有边的终点依次进行松弛操作(此处有e,f两个点),此时路径表格状态为:

在最短路径表中,e,f的最短路径估值变小了,e在队列中存在,f不存在。因此
e不用入队了,f要入队,此时队列中的元素为d,e,f

队首元素d点出队,对以d为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

在最短路径表中,g的最短路径估值没有变小(松弛不成功),没有新结点入队,队列中元素为f,g

队首元素f点出队,对以f为起始点的所有边的终点依次进行松弛操作(此处有d,e,g三个点),此时路径表格状态为:

在最短路径表中,e,g的最短路径估值又变小,队列中无e点,e入队,队列中存在g这个点,g不用入队,此时队列中元素为g,e

队首元素g点出队,对以g为起始点的所有边的终点依次进行松弛操作(此处只有b点),此时路径表格状态为:

在最短路径表中,b的最短路径估值又变小,队列中无b点,b入队,此时队列中元素为e,b
队首元素e点出队,对以e为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

在最短路径表中,g的最短路径估值没变化(松弛不成功),此时队列中元素为b

队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e这个点),此时路径表格状态为:

在最短路径表中,e的最短路径估值没变化(松弛不成功),此时队列为空了

最终a到g的最短路径为14

上面的一坨说白了就是:先拿一个点(起点)入队,然后那这个点与他相连的边进行更新最小值,若更新成功,把相连的点加入队列中,改点弹出,重复上诉操作,直到队列变成空。这是我们所要求的对短路都放在了dis数组里。

代码:

法一:(但是我不喜欢这种方式)

#include<cstdio>
using namespace std;
struct node
{int x;
 int value;
 int next;
};
node e[];
],dis[],st[],queue[];
int main()
{
  int n,m,u,v,w,start,h,r,cur;
  while(scanf("%d%d",&n,&m)!=EOF)
  {
    ;i<=;i++)
      {
       visited[i]=;
       dis[i]=-;
       st[i]=-;  //这个初始化给下边那个while循环带来影响
      }

   ;i<=m;i++)
      {
       scanf("%d%d%d\n",&u,&v,&w);
       e[i].x=v;            //记录后继节点    相当于链表中的创建一个节点,并使得数据域先记录
       e[i].value=w;
       e[i].next=st[u];     //记录顶点节点的某一个边表节点的下标,相当于在链表中吧该边表节点的next指针先指向他的后继边表节点
       st[u]=i;                //把该顶点的指针指向边表节点,相当于链表中的插入中,头结点的指针改变
      }
    start=;
    visited[start]=;
    dis[start]=;
    h=;
    r=;
    queue[r]=start;
    while(h!=r)
     {

      h=(h+)%;
      cur=queue[h];
      int tmp=st[cur];
      visited[cur]=;

     )
        {
            if (dis[e[tmp].x]<dis[cur]+e[tmp].value)            //改成大于号才对
            {
                   dis[e[tmp].x]=dis[cur]+e[tmp].value;
                    )
                      {

                           visited[e[tmp].x]=;
                           r=(r+)%;
                            queue[r]=e[tmp].x;
                       }
            }
         tmp=e[tmp].next;
        }
     }
    printf("%d\n",dis[n]);
  }
  ;
}

法二:

#include<queue>
#include<cstdio>
#define INF 2147483647LL
using namespace std;
struct node {
    int to,dis,next;
}edge[];
],dis[];//n 点的个数   m 连边的条数   s 起点   dis_1 储存最小边
inline void edge_add(int from,int to,int dis)
{
    num++;
    edge[num].to=to;
    edge[num].dis=dis;
    edge[num].next=head[from];
    head[from]=num;
}
void SPFA(int start)
{
    queue<int>que;
    ];
    ;i<=n;i++) dis[i]=INF,if_in_spfa[i]=false;//初始化
    dis[start]=,if_in_spfa[start]=true;//加入第一个点(起点)
    que.push(start);//将起点入队
    while(!que.empty())//如果队列不为空,就接着执行操作,直到队列为空
    {
        int cur_1=que.front();//取出队列的头元素
        que.pop();//将队列头元素弹出
        for(int i=head[cur_1];i;i=edge[i].next)//枚举与该点连接的边
        {
            if(dis[cur_1]+edge[i].dis<dis[edge[i].to])//如果能更新最小值
            {
                dis[edge[i].to]=edge[i].dis+dis[cur_1];//更新最小值
                if(!if_in_spfa[edge[i].to])//将所能更新的没入队的元素入队
                {
                    if_in_spfa[edge[i].to]=true;//标记为已入队
                    que.push(edge[i].to);//推入队中
                }
            }
        }
        if_in_spfa[cur_1]=false;//将该点标记为出队列
    }
}

int main()
{
    int s;
    scanf("%d%d%d",&n,&m,&s);
    int from,to,dis;
    ;i<=m;i++)
    {
        scanf("%d%d%d",&from,&to,&dis);
        edge_add(from,to,dis);//用邻接链表储存
    }
    SPFA(s);//从起点开始spfa
    ;i<=n;i++) printf("%d ",dis[i]);
    ;
}

最新文章

  1. JavaScript权威设计--JavaScript表达式与运算符(简要学习笔记五)
  2. 用户体验学习笔记(工程中发现的PM常犯错误)
  3. 制作stick侧边栏导航效果
  4. C++ 内联函数笔记
  5. splay学习
  6. IOS 应用中从竖屏模式强制转换为横屏模式
  7. Codeforces Gym 100610 Problem E. Explicit Formula 水题
  8. 九度OJ 1104 整除问题
  9. [转] C++虚函数与虚函数表
  10. jQuery自学笔记(二):jQuery选择器
  11. 相机标定 matlab opencv ROS三种方法标定步骤(3)
  12. Linux 安装Anaconda 4.4.0
  13. Dell poweredge r210进BIOS改动磁盘控制器(SATA Controller)接口模式
  14. Android事件机制之二:onTouch详解
  15. 事务,mybatis
  16. Python中使用cx_Oracle调用Oracle存储过程
  17. 解决node使用中8080端口被占用
  18. [React] 15 - Redux: practice IM
  19. (转)SQL知识_SQL Case when 的使用方法
  20. 关于.NetCore 2.0 迁移到2.1的一些建议和问题

热门文章

  1. 动态规划:LIS优化
  2. 基于 Express+Gulp+BrowserSync 搭建一套高性能的前端开发环境
  3. 您是哪个等级的CSS开发人员?
  4. html css 如何将表头固定
  5. el-option &gt; 1500 条时的卡顿问题
  6. marquee滚动效果
  7. Linux实用命令之xdg-open
  8. 关于ORA-04091异常的出现原因,以及解决方案
  9. FusionCharts 用法心得
  10. mysql 配置数据库主从同步