舒尔(

Schur

\texttt{Schur}

Schur)不等式1

具体内容

Schur

\texttt{Schur}

Schur 不等式:

x

y

z

x,y,z

x,y,z 为非负实数,

r

r

r 为实数时,下列不等式成立

x

r

(

x

y

)

(

x

z

)

+

y

r

(

y

x

)

(

y

z

)

+

z

r

(

z

x

)

(

z

y

)

0

x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ge 0

xr(x−y)(x−z)+yr(y−x)(y−z)+zr(z−x)(z−y)≥0

例子

  • r

    =

    0

    r=0

    r=0 时

    (

    x

    y

    )

    (

    x

    z

    )

    +

    (

    y

    x

    )

    (

    y

    z

    )

    +

    (

    z

    x

    )

    (

    z

    y

    )

    0

    (x-y)(x-z)+(y-x)(y-z)+(z-x)(z-y)\ge 0

    (x−y)(x−z)+(y−x)(y−z)+(z−x)(z−y)≥0

    x

    2

    +

    y

    2

    +

    z

    2

    x

    y

    y

    z

    z

    x

    0

    \Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge 0

    ⇔x2+y2+z2−xy−yz−zx≥0

    1

    2

    {

    (

    x

    y

    )

    2

    +

    (

    y

    z

    )

    2

    +

    (

    z

    x

    )

    2

    }

    0

    \Leftrightarrow \frac{1}{2}\{(x-y)^2+(y-z)^2+(z-x)^2\} \ge 0

    ⇔21​{(x−y)2+(y−z)2+(z−x)2}≥0

  • r

    =

    1

    r=1

    r=1 时

    x

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    (

    z

    x

    )

    (

    z

    y

    )

    0

    x(x-y)(x-z)+y(y-x)(y-z)+z(z-x)(z-y)\ge 0

    x(x−y)(x−z)+y(y−x)(y−z)+z(z−x)(z−y)≥0

    x

    3

    +

    y

    3

    +

    z

    3

    +

    3

    x

    y

    z

    x

    y

    (

    x

    +

    y

    )

    +

    y

    z

    (

    y

    +

    z

    )

    +

    z

    x

    (

    z

    +

    x

    )

    \Leftrightarrow x^3+y^3+z^3+3xyz\ge xy(x+y)+yz(y+z)+zx(z+x)

    ⇔x3+y3+z3+3xyz≥xy(x+y)+yz(y+z)+zx(z+x)

  • r

    =

    1

    2

    r=\dfrac{1}{2}

    r=21​ 时

    x

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    (

    z

    x

    )

    (

    z

    y

    )

    0

    \sqrt{x}(x-y)(x-z)+\sqrt{y}(y-x)(y-z)+\sqrt{z}(z-x)(z-y)\ge 0

    x

    ​(x−y)(x−z)+y

    ​(y−x)(y−z)+z

    ​(z−x)(z−y)≥0

    x

    3

    2

    (

    y

    +

    z

    x

    )

    +

    y

    3

    2

    (

    z

    +

    x

    y

    )

    +

    z

    3

    2

    (

    x

    +

    y

    z

    )

    x

    y

    z

    (

    1

    x

    +

    1

    y

    +

    1

    z

    )

    \Leftrightarrow x^{\frac{3}{2}}(y+z-x)+y^{\frac{3}{2}}(z+x-y)+z^{\frac{3}{2}}(x+y-z)\le xyz\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)

    ⇔x23​(y+z−x)+y23​(z+x−y)+z23​(x+y−z)≤xyz(x

    ​1​+y

    ​1​+z

    ​1​)

证明

证明:
左边是

x

,

y

,

z

x,y,z

x,y,z 的对称式,设

x

y

z

x\ge y\ge z

x≥y≥z 不失一般性.

  1. r

    >

    0

    r>0

    r>0 时

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    r

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    r

    (

    z

    x

    )

    (

    z

    y

    )

    x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)

    xr(x−y)(x−z)+yr(y−x)(y−z)+zr(z−x)(z−y)

    =

    (

    x

    y

    )

    {

    x

    r

    (

    x

    z

    )

    y

    r

    (

    y

    z

    )

    }

    +

    z

    r

    (

    x

    z

    )

    (

    y

    z

    )

    =(x-y)\{x^r(x-z)-y^r(y-z)\}+z^r(x-z)(y-z)

    =(x−y){xr(x−z)−yr(y−z)}+zr(x−z)(y−z)

    x

    r

    y

    r

    0

    ,

    x

    z

    y

    z

    0

    x^r\ge y^r \ge 0,\ x-z\ge y-z \ge 0

    xr≥yr≥0, x−z≥y−z≥0
    因为

    (

    x

    y

    )

    [

    x

    r

    (

    x

    z

    )

    y

    r

    (

    y

    z

    )

    ]

    0

    (x-y)\left[x^r(x-z)-y^r(y-z)\right]\ge 0\text{,}

    (x−y)[xr(x−z)−yr(y−z)]≥0,又因为

    z

    r

    0

    ,

    x

    z

    0

    ,

    y

    z

    0

    ,

    z

    r

    (

    x

    z

    )

    (

    y

    z

    )

    0

    z^r\ge 0,\ x-z\ge 0,\ y-z \ge 0, z^r(x-z)(y-z)\ge 0

    zr≥0, x−z≥0, y−z≥0,zr(x−z)(y−z)≥0根据

    (

    x

    y

    )

    {

    x

    r

    (

    x

    z

    )

    y

    r

    (

    y

    z

    )

    }

    +

    z

    r

    (

    x

    z

    )

    (

    y

    z

    )

    0

    (x-y)\{x^r(x-z)-y^r(y-z)\}+z^r(x-z)(y-z)\ge 0

    (x−y){xr(x−z)−yr(y−z)}+zr(x−z)(y−z)≥0所以,

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    r

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    r

    (

    z

    x

    )

    (

    z

    y

    )

    0

    x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ge 0

    xr(x−y)(x−z)+yr(y−x)(y−z)+zr(z−x)(z−y)≥0

  2. r

    0

    r\le 0

    r≤0 时

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    r

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    r

    (

    z

    x

    )

    (

    z

    y

    )

    x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)

    xr(x−y)(x−z)+yr(y−x)(y−z)+zr(z−x)(z−y)

    =

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    (

    y

    z

    )

    {

    z

    r

    (

    x

    z

    )

    y

    r

    (

    x

    y

    )

    }

    =x^r(x-y)(x-z)+(y-z)\{z^r(x-z)-y^r(x-y)\}

    =xr(x−y)(x−z)+(y−z){zr(x−z)−yr(x−y)}同理可得,

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    r

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    r

    (

    z

    x

    )

    (

    z

    y

    )

    0

    x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ge 0

    xr(x−y)(x−z)+yr(y−x)(y−z)+zr(z−x)(z−y)≥0

例题

1 

a

,

b

,

c

a,b,c

a,b,c 为非负实数时,请证明以下不等式。

(

a

+

b

c

)

(

b

+

c

a

)

(

c

+

a

b

)

a

b

c

(a+b-c)(b+c-a)(c+a-b)\le abc

(a+b−c)(b+c−a)(c+a−b)≤abc

2 非负实数

a

,

b

,

c

a,b,c

a,b,c 有

a

+

b

+

c

=

1

a+b+c=1

a+b+c=1,请证明以下不等式。

a

3

+

b

3

+

c

3

+

6

a

b

c

1

4

a^3+b^3+c^3+6abc\ge \frac{1}{4}

a3+b3+c3+6abc≥41​

广告

绿树公司 - 官方网站:https://wangping-lvshu.github.io/LvshuNew/

绿树智能 - 官方网站:https://wangping-lvshu.github.io/LvshuZhineng/

(现在使用,人人均可获得300元大奖)


  1. [2022/04/09更新] 由于

    tag

    \texttt{tag}

    tag 中没有 数论 数学 等标签,所以现在的标签是错误的。

最新文章

  1. 【JAVA】Socket 编程
  2. CABasicAnimation的基本使用方法(移动·旋转·放大·缩小)
  3. SQL if exists database总是出现语法错误
  4. hibernate之关联映射
  5. 2016年11月12日 星期六 --出埃及记 Exodus 20:3
  6. 10个强大的Apache开源模块
  7. OpenCV SIFT原理与源码分析
  8. 一个可以提高开发效率的Git命令-- Cherry-Pick
  9. 第十三篇 一个安装、管理windows服务的桌面程序
  10. 【一通百通】c/php的printf用法
  11. ZED 相机 && ORB-SLAM2安装环境配置与ROS下的调试
  12. codeforces#1152D. Neko and Aki's Prank(dp)
  13. [转帖]windows+xshell+xming访问非桌面版Linux服务器
  14. 如何在网页中用echarts图表插件做出静态呈现效果
  15. 使用IntelliJ IDEA开发java web
  16. MEF 插件式开发之 小试牛刀
  17. JDK1.7 HashMap 导致循环链表
  18. 在MongoDB中执行查询、创建索引
  19. [转]System.DllNotFoundException: 无法加载 DLL“*.dll”: 内存位置访问无效。 (异常来自 HRESULT:0x800703E6)
  20. 【再话FPGA】在xilinx中PCIe IP Core使用方法

热门文章

  1. 【Python数据分析案例】python数据分析老番茄B站数据(pandas常用基础数据分析代码)
  2. mybatis入门,CRUD,万能Map,模糊查询
  3. C Primer Plus 学习笔记 -- 前六章
  4. 隔离这几天开发了一个带控制台的OAuth2授权服务器分享给大家
  5. 题解0012:剪花布条(KMP)
  6. OAuth2密码模式已死,最先进的Spring Cloud认证授权方案在这里
  7. 日期和时间API - 读《Java 8实战》
  8. Ubuntu16.04编译OpenJDK7u40
  9. SQL中常用的字符串LEFT函数和RIGHT函数详解!
  10. Java_循环结构