kafka consumer是一个单纯的单线程程序,因此相对于producer会更好理解些。阅读consumer代码的关键是理解回调,因为consumer中使用了大量的回调函数。参看kafka中的回调函数

1 整体流程

从KafkaConsumer#pollOnce(..)入口来看consumer的整体流程

private Map<TopicPartition, List<ConsumerRecord<K, V>>> pollOnce(long timeout) {
coordinator.ensureCoordinatorReady(); // 发送获取coordinator请求,直到获取到coordinator if (subscriptions.partitionsAutoAssigned())
coordinator.ensurePartitionAssignment(); // 发送joinGroup和syncGroup,直到获取到consumer被分配的parttion信息;并启动心跳 if (!subscriptions.hasAllFetchPositions())
updateFetchPositions(this.subscriptions.missingFetchPositions()); // 拉取offset信息和commited信息,以便拉取数据的时候直到从哪开始拉取 long now = time.milliseconds(); client.executeDelayedTasks(now); Map<TopicPartition, List<ConsumerRecord<K, V>>> records = fetcher.fetchedRecords(); // 从本地数据结构中读取,并不是发送请求 if (!records.isEmpty()) // 如果获取到就直接返回
return records; fetcher.sendFetches(); // 发送拉取数据请求
client.poll(timeout, now); // 真正的发送
return fetcher.fetchedRecords(); // 从本地数据结构中读取,并不是发送请求
}

2 Reblance joinGroup和syncGroup

consumer需要向coordinator发送请求,来知道自己负责消费哪些topic的哪些partiton。这个过程可以分为两个请求:

  1. joinGroup。joinGroup请求加入消费组,一旦coordinator确定了所有成员都发送了joinGroup,就会返回给客户端response,response中包括memberid、generation、consumer是否是leader等信息。
  2. syncGroup。如果consumer是leader的话,他会在本地将已经分配好的partiton信息附加到request中,告诉coordinator,我是这样分配的。这里需要注意consumer分区的分配是放在consumer端的。如果是普通的非leader consumer,那么就是简单的请求。无论是leader还是普通的消费者, coordinator都会返回consumer需要消费的parttion列表。

joinGroup和syncGroup的主要逻辑在AbstractCoordinator#ensureActiveGroup(..),在发送join和sync之前会提交一把offset,这样做是为了防止reblance造成的重复消费。

发送sync请求是在join请求的回调函数中,即AbstractCoordinator#JoinGroupResponseHandler(..),也就是说当join请求返回后,调用response的时候会发送一次sync请求。

private class JoinGroupResponseHandler extends CoordinatorResponseHandler<JoinGroupResponse, ByteBuffer> {

        @Override
public JoinGroupResponse parse(ClientResponse response) {
return new JoinGroupResponse(response.responseBody());
} @Override
public void handle(JoinGroupResponse joinResponse, RequestFuture<ByteBuffer> future) {
Errors error = Errors.forCode(joinResponse.errorCode());
if (error == Errors.NONE) {
log.debug("Received successful join group response for group {}: {}", groupId, joinResponse.toStruct());
AbstractCoordinator.this.memberId = joinResponse.memberId(); // 读取response中的memberid
AbstractCoordinator.this.generation = joinResponse.generationId(); // generationId
AbstractCoordinator.this.rejoinNeeded = false;
AbstractCoordinator.this.protocol = joinResponse.groupProtocol();
sensors.joinLatency.record(response.requestLatencyMs()); // 发送sync请求
if (joinResponse.isLeader()) {
onJoinLeader(joinResponse).chain(future);
} else {
onJoinFollower().chain(future);
}
// 省略其他
}
}
}

需要注意的是,kafka一个group可以消费多个topic,假设如果有两个topic:TopicA和TopicB,他们分别都有一个消费组名字都叫test,如果TopicA的test内消费者数量变化引起reblance,会造成TopicB的test也会reblance的。可以看下这里:http://www.cnblogs.com/dongxiao-yang/p/5417956.html

3 heartBeat

在发送完joinGroup后会启动heartBeat。HeartbeatTask实现了DelayedTask。heatbeat定时向coordinator发送心跳信息,如果返回ILLEGAL_GENERATION,说明coordinator已经重新进行了reblance,这个时候consuemr就需要再次发送join和sync请求。如下HeartbeatCompletionHandler

private class HeartbeatCompletionHandler extends CoordinatorResponseHandler<HeartbeatResponse, Void> {
@Override
public HeartbeatResponse parse(ClientResponse response) {
return new HeartbeatResponse(response.responseBody());
} @Override
public void handle(HeartbeatResponse heartbeatResponse, RequestFuture<Void> future) {
sensors.heartbeatLatency.record(response.requestLatencyMs());
Errors error = Errors.forCode(heartbeatResponse.errorCode());
if (error == Errors.NONE) {
log.debug("Received successful heartbeat response for group {}", groupId);
future.complete(null);
} else if (error == Errors.GROUP_COORDINATOR_NOT_AVAILABLE
|| error == Errors.NOT_COORDINATOR_FOR_GROUP) {
log.debug("Attempt to heart beat failed for group {} since coordinator {} is either not started or not valid.",
groupId, coordinator);
coordinatorDead();
future.raise(error);
} else if (error == Errors.REBALANCE_IN_PROGRESS) {
log.debug("Attempt to heart beat failed for group {} since it is rebalancing.", groupId);
AbstractCoordinator.this.rejoinNeeded = true;
future.raise(Errors.REBALANCE_IN_PROGRESS);
} else if (error == Errors.ILLEGAL_GENERATION) { // 服务端已经是新一代了,客户端需要reblance。
log.debug("Attempt to heart beat failed for group {} since generation id is not legal.", groupId);
AbstractCoordinator.this.rejoinNeeded = true; // rejoinNeeded置为true,下次拉取的时候会重新发送join和sync请求
future.raise(Errors.ILLEGAL_GENERATION);
} else if (error == Errors.UNKNOWN_MEMBER_ID) {
log.debug("Attempt to heart beat failed for group {} since member id is not valid.", groupId);
memberId = JoinGroupRequest.UNKNOWN_MEMBER_ID;
AbstractCoordinator.this.rejoinNeeded = true;
future.raise(Errors.UNKNOWN_MEMBER_ID);
} else if (error == Errors.GROUP_AUTHORIZATION_FAILED) {
future.raise(new GroupAuthorizationException(groupId));
} else {
future.raise(new KafkaException("Unexpected error in heartbeat response: " + error.message()));
}
}
}

4 DelayedTask

DelayedTask是一个接口,只有一个run方法,实现了DelayedTask的类只有两个:AutoCommitTask和HeartbeatTask。两个都是定时请求的任务。那么consumer单线程是如何实现定时提交的呢?原来Consumer会将AutoCommitTask和HeartbeatTask放在ConsumerNetworkClient#DelayedTaskQueue中,DelayedTaskQueue中包含一个PriorityQueue,会将DelayedTask封装成Entry并根据时间优先级排序。每次poll的时候都会从DelayedTaskQueue中获取第一个,根据第一个Entry剩余时间来确定poll阻塞时间。

ConsumerNetworkClient调用schedule将DelayedTaskQueue放到ConsumerNetworkClient#DelayedTaskQueue中

public void schedule(DelayedTask task, long at) {
delayedTasks.add(task, at); // DelayedTaskQueue#add
}

DelayedTaskQueue#add

public class DelayedTaskQueue {

    private PriorityQueue<Entry> tasks; // 优先级队列

    public DelayedTaskQueue() {
tasks = new PriorityQueue<Entry>();
} /**
* Schedule a task for execution in the future.
*
* @param task the task to execute
* @param at the time at which to
*/
public void add(DelayedTask task, long at) {
tasks.add(new Entry(task, at));
}
// ...
}

AutoCommitTask和HeartbeatTask为了能够一直执行,会在回调函数中将自己重新加入到DelayedTaskQueue中,并指定下次执行的时间。这样就可以不停的执行了。以heartbeat为例

private class HeartbeatTask implements DelayedTask {

        private boolean requestInFlight = false;

        public void reset() {
// start or restart the heartbeat task to be executed at the next chance
long now = time.milliseconds();
heartbeat.resetSessionTimeout(now);
client.unschedule(this); if (!requestInFlight)
client.schedule(this, now);
} @Override
public void run(final long now) {
if (generation < 0 || needRejoin() || coordinatorUnknown()) {
// no need to send the heartbeat we're not using auto-assignment or if we are
// awaiting a rebalance
return;
} if (heartbeat.sessionTimeoutExpired(now)) {
// we haven't received a successful heartbeat in one session interval
// so mark the coordinator dead
coordinatorDead();
return;
} if (!heartbeat.shouldHeartbeat(now)) {
// we don't need to heartbeat now, so reschedule for when we do
client.schedule(this, now + heartbeat.timeToNextHeartbeat(now));
} else {
heartbeat.sentHeartbeat(now);
requestInFlight = true; RequestFuture<Void> future = sendHeartbeatRequest();
future.addListener(new RequestFutureListener<Void>() {
@Override
public void onSuccess(Void value) {
requestInFlight = false;
long now = time.milliseconds();
heartbeat.receiveHeartbeat(now);
long nextHeartbeatTime = now + heartbeat.timeToNextHeartbeat(now); // 回调中再次加入,实现了循环定时执行
client.schedule(HeartbeatTask.this, nextHeartbeatTime);
} @Override
public void onFailure(RuntimeException e) {
requestInFlight = false;
client.schedule(HeartbeatTask.this, time.milliseconds() + retryBackoffMs);
}
});
}
}
}

5 updateFetchPositions

updateFetchPositions 用于更新commited和offset信息。客户端的消费状态是保存在SubscriptionState中的。SubscriptionState有一下主要属性

public class SubscriptionState {
private Pattern subscribedPattern;
// 消费者订阅的topic
private final Set<String> subscription;
private final Set<String> groupSubscription;
private final Set<TopicPartition> userAssignment;
// 消费状态
private final Map<TopicPartition, TopicPartitionState> assignment;
private boolean needsPartitionAssignment;
private boolean needsFetchCommittedOffsets;
private final OffsetResetStrategy defaultResetStrategy;
private ConsumerRebalanceListener listener;
// ...省略
} private static class TopicPartitionState {
private Long position; // 消费位置,从coordinator拉取的时候会带上该字段
private OffsetAndMetadata committed; // 已经提交的offset
private boolean paused; // whether this partition has been paused by the user
private OffsetResetStrategy resetStrategy; // the strategy to use if the offset needs resetting
}

消费状态信息最终被保存在TopicPartitionState中,topicPartitionState中有两个重要的属性:committed和position。需要注意的是commited和position其实表示下一次需要消费的位置,比如0-10的offsetc都已经提交了,那么从coordinator拉取到的committed是11而不是10;position也是一样的,如果已经消费到15,那么position的值是16。更多可见consumer提交offset原理

6 几个重要的参数

  1. fetch.min.bytes 一个parttion拉取的最小字节数。consumer是批量从broker拉取消息的,fetch.min.bytes表示最小拉取多少字节才返回。默认值是1
  2. fetch.max.wait.ms 拉取数据的时候最长等待时间,与fetch.min.bytes配合使用。等待fetch.max.wait.ms时间后,还没有得到fetch.min.bytes大小的数据则返回。默认值500.
  3. max.partition.fetch.bytes 一个partiton最多拉取字节数。默认值1048576,即1M。

以上参数都是放到request中。如下Fetcher#createFetchRequests(..)

private Map<Node, FetchRequest> createFetchRequests() {
// create the fetch info
Cluster cluster = metadata.fetch();
Map<Node, Map<TopicPartition, FetchRequest.PartitionData>> fetchable = new HashMap<>();
for (TopicPartition partition : fetchablePartitions()) {
Node node = cluster.leaderFor(partition);
if (node == null) {
metadata.requestUpdate();
} else if (this.client.pendingRequestCount(node) == 0) {
// if there is a leader and no in-flight requests, issue a new fetch
Map<TopicPartition, FetchRequest.PartitionData> fetch = fetchable.get(node);
if (fetch == null) {
fetch = new HashMap<>();
fetchable.put(node, fetch);
} long position = this.subscriptions.position(partition);
fetch.put(partition, new FetchRequest.PartitionData(position, this.fetchSize)); // fetchSize即max.partition.fetch.bytes
log.trace("Added fetch request for partition {} at offset {}", partition, position);
}
} // create the fetches
Map<Node, FetchRequest> requests = new HashMap<>();
for (Map.Entry<Node, Map<TopicPartition, FetchRequest.PartitionData>> entry : fetchable.entrySet()) {
Node node = entry.getKey();
// maxWaitMs即fetch.max.wait.ms,minBytes即fetch.min.byte
FetchRequest fetch = new FetchRequest(this.maxWaitMs, this.minBytes, entry.getValue());
requests.put(node, fetch);
}
return requests;
}
  1. max.poll.records 返回的最大record数。与以上三个参数不同,该参数不会放到fetch request中,拉取的records会放在本地变量中,该参数表示将本地变量中多少records返回。

Fetcher拉取的所有消息都会被放到放到records中,record是一个List,存放了所有partiton的record,max.poll.records参数就用来配置每次从list中返回多少条record的,注意是所有partiton的。

Fetcher#fetchedRecords(..)

public Map<TopicPartition, List<ConsumerRecord<K, V>>> fetchedRecords() {
if (this.subscriptions.partitionAssignmentNeeded()) {
return Collections.emptyMap();
} else {
Map<TopicPartition, List<ConsumerRecord<K, V>>> drained = new HashMap<>();
throwIfOffsetOutOfRange();
throwIfUnauthorizedTopics();
throwIfRecordTooLarge(); int maxRecords = maxPollRecords;
Iterator<PartitionRecords<K, V>> iterator = records.iterator();
while (iterator.hasNext() && maxRecords > 0) {
PartitionRecords<K, V> part = iterator.next();
maxRecords -= append(drained, part, maxRecords); // maxRecords就是max.poll.records
if (part.isConsumed())
iterator.remove();
}
return drained;
}
}
  1. 另外在调用consumer api的时候需要制定timeout时间,如果超过timeout仍然没有消息则返回空的records。
while (true) {
ConsumerRecords<String, String> records = consumer.poll(1000); // timeout时间
// System.out.println("begin for 2");
for (ConsumerRecord<String, String> record : records) {
// System.out.println("hello");
System.out.println(record.partition() + " " + record.offset());
}
}

最新文章

  1. Composer管理PHP包
  2. VS重新生成后仍然执行旧代码
  3. 年终福利:调试.NET Framework源代码
  4. Yii2 RBAC 用到的表
  5. MVC HtmlHelper用法大全
  6. 十一、从头到尾彻底解析Hash 表算法
  7. MFC 数据库编程 增删改查的一个例子
  8. GOLang(第二篇 发起一个Http请求)
  9. [linux]ngrep命令、常见用法
  10. 将数据库从服务器移到浏览器--indexedDB基本操作封装
  11. Easy sssp
  12. word在页眉中插入页码
  13. Spring9:Autowire(自动装配)机制
  14. RabbitMQRPC 官方demo
  15. Python面试常见的问题
  16. SQLAlchemy增删改查
  17. bean shell 中parameter传递参数的方法
  18. 解决问题的方法=&gt;现象--&gt;原因--&gt;方案--&gt;方案的优缺点
  19. response对象、转发、重定向
  20. iOS 数据持久化-- FMDB

热门文章

  1. smbms项目核心功能实现
  2. 【C# 线程】转载 句柄的基本概念 .NET对象与Windows句柄
  3. ASCII 文件编码格式
  4. Echarts图表类型
  5. Hbase的namespace命令操作
  6. Python:使用piecewise与curve_fit进行三段拟合
  7. C语言中一些知识点
  8. Linux环境下安装Java JDK
  9. 《手把手教你》系列基础篇(七十六)-java+ selenium自动化测试-框架设计基础-TestNG实现DDT - 下篇(详解教程)
  10. elasticsearch高亮之highlight原理