我们知道kmem_cache中对于每CPU都有一个array_cache,已作为每CPU申请内存的缓存.  此函数的目的在于:每个kmem_cache都有一个kmem_list3实例,该实例的shared作为一个kmem_cache上所有CPU的内存申请缓存.  但是在此之前,seup_cpu_cache中对于kmem_cache中array_cache的值初始化体现不出缓存思想,而且对于kmem_cache中的kmem_list3.shared也没有利用.

kmem_cache_init_late的目的就在于完善slab分配器的缓存机制.

start_kernel()
|-->page_address_init()
|
|-->setup_arch(&command_line);
|
|-->setup_per_cpu_areas();
|
|-->build_all_zonelist()
|
|-->page_alloc_init()
|
|-->pidhash_init()
|
|-->vfs_caches_init_early()
|
|-->mm_init()
|
|-->.......
|
|-->gfp_allowed_mask = __GFP_BITS_MASK;
| 在此之前,gfp_allowed_mask = GFP_BOOT_MASK;
|
|-->kmem_cache_init_late();
|
void __init kmem_cache_init_late(void)
|-->struct kmem_cache *cachep;
|
|-->list_for_each_entry(cachep, &cache_chain, next)
|-->if (enable_cpucache(cachep, GFP_NOWAIT)) BUG();
|
|--g_cpucache_up = FULL;
|
|-->init_lock_keys();
|
|-->register_cpu_notifiler(&cpu_notifier);
int enabel_cpucache(struct kmem_cache *cachep, gfp_t gfp)
|-->int limit;
|
|-->if (cachep->buffer_size > ) limit = ;
| else if (cachep->buffer_size > PAGE_SIZE) limit = ;
| else if (cachep->buffer_size > ) limit = ;
| else if (cachep->buffer_size > ) limit = ;
| else limit = ;
| 为什么选择这些数值啊,不明白???
|
|-->int shared = ;
| if(cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > )
| shared = ;
|
|--int err = ;
| err = do_tune_cpucache(cachep, limit, (limit + ) / , shared, gfp);
|
|--return err;
int do_tune_cpucache(struct kmem_cache *cachep, int limit,
int batchcount, int shared, gfp_t gfp)
|-->struct ccupdate_struct *new = NULL;
| new = kazlloc(sizeof(*new), gfp);
|
|--int i;
|--for_each_online_cpu(i)
|--{
| new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
| batchcount, gfp);
| 根据limit, batchcount数值,构建新的array_cache实例.
|
| 因为kmem_cache中的array_cache是每个CPU的,所以此处是循环,为每个CPU都
| 都构建一个array_cache实例.
|--}
|
|-->new->cachep = cachep;
|
|-->on_each_cpu(do_ccupdate_local, (void*)new, );
| 将kmem_cache下的每个CPU的array_cache[i]更换成new->new[i];
|
|-->cachep->batchcount = batchcount;
| cachep->limit = limit;
| cachep->shared = shared;
|
|
| 上面以替换了kmem_cache下的每个CPU的array_cache[i],
| 因此需要把原来的array_cache释放掉.
|--for_each_online_cpu(i)
|--{
| struct array_cache *ccolde = new->new[i];
| if(!ccold) continue;
|
| free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
| 我们知道在此之前,ccold->avail一直为0,所以该函数暂时可以不看.
| 此函数,就是把ccold->avail个ccole->entry中的数组元素指向的内存空间
| 释放给slab管理器.
|
|
| kfree(ccold);
| 基本同于free_block,我们知道slab所管理的内存都是位于低端内存,低端内存的物
| 理地址及其对应的虚拟地址存在固定偏移,因此根据该部分的虚拟地址可以很容易的找到
| struct page实例,而struct page中的lru链表,在slab中被复用了,根据链表
| 指针可以找到kmem_cache实例,所以kfree基本等同于free_block;
| 但是kfree与free_block的重要的不同点在于,free_block直接将内存释放给了
| slab管理器,而kfree首选将内存释放给每CPU的array_cache数组.
|
|--}
|-->kfree(new);
|
|--return alloc_kmemlist(cachep, gfp);
| 每个kmem_cache中的kmem_list3.shared上array_cache可以被所有CPU共享.
我们知道kmem_cache中对于每CPU都有一个array_cache,已作为每CPU申请内存的缓存.
此函数的目的在于:每个kmem_cache都有一个kmem_list3实例,该实例的shared作为
一个kmem_cache上所有CPU的内存申请缓存(对于UMA,kmem_cache.alien没有用处).
此时,我们不妨猜测,当一个CPU通过kmalloc申请内内存时,将从kmem_cache实例上
自己的array_cache进行申请,如果没有则从kmem_list3->shared上补充到array_cache上,
如果kmem_list3上也每有,将从slab管理器上获取,充分体现了缓存的利用.
int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
|-->int node = ;
| struct kmem_list3 *l3 = NULL;
| struct array_cache *new_shared = NULL;
| struct array_cache **new_alien = NULL;
|
|-->for_each_online_node(node)
|--{
| new_shared = NULL;
| if(cachep->shared)
| new_shared = alloc_arraycache(node,
| cachep->shared * cachep->batchcount,
| 0xbaadf00d, gfp);
|
|
| l3 = cachep->nodelists[node];
| if(l3)
| |-{
| | struct array_cache *shared = l3->shared;
| | if(shared)
| | free_block(cachep, shared->entry, shared->avail, node);
| | l3->shared = new_shared;
| | if(!l3->alien) l3->alien = new_alien, new_alien = NULL;
| | l3->free_limit = ( + NR_CPUS) * cachep->batchcount
| | + cachep->num;| | kfree(shared);
| | free_alien_cache(new_alien);
| | continue; //对于单节点,再次continue时,将退出循环
| |-}
| |
| |
| ...... 对于UMA体系 nothing
| |
|--}
|
|--return ;
void do_ccupdate_local(void *info)
|-->struct ccupdate_struct *new = info;
| struct array_cache *old = cpu_cache_get(new->cachep);
|
|-->new->cachep->array[smp_processor_id()] =
| new->new[smp_processor_id];
| new->new[smp_processor_id()] = old;
struct array_cache *alloc_arraycache(int node, int entries,
int batchcount, gfp_t gfp)
|-->int memsize = sizeof(void *) * entries
| + sizeof(struct array_cache);
| 根据entries的数值,计算该分配的array_cache空间大小.
|
|-->struct array_cache *nc = NULL;
| nc = kmalloc_node(memsize, gfp, node);
| nc->avail = ;
| nc->limit = entries;
| nc->batchcount = batchcount;
| nc->touched = ;
| spin_lock_init(&nc->lock);
|
|-->return nc;

最新文章

  1. codevs 1052 地鼠游戏
  2. Android安全研究经验谈
  3. 深入浅出ES6(八):Symbols
  4. YTU 2620: B 链表操作
  5. hibernate.cfg.xml hibernate 配置文件模板
  6. 自定义弧形的 tabBar
  7. [itint5]二叉树转换线索二叉树
  8. MongDB简介
  9. yum --rpm包安装
  10. bootstrap table 服务器端分页例子分享
  11. Oracle数据库之PL/SQL包
  12. js获取浮动(float)元素的style.left值为空的解决办法
  13. An overnight dance in discotheque CodeForces - 814D (几何)
  14. protobuf使用简介
  15. 基于Token的身份认证 与 基于服务器的身份认证
  16. python-day68--模型层基础(model)
  17. MonkeyRunner原理初步--Android自动化测试学习历程
  18. 在Linux下将TPC-H数据导入到MySQL
  19. 【转】UBUNTU 下GIT的安装
  20. centos下安装ipython(minglnghang命令行)

热门文章

  1. 基于jQuery点击图像居中放大插件Zoom
  2. jsp----标签编程(JSTL)
  3. [转]我的MYSQL学习心得(六) 函数
  4. selenium.common.exceptions.WebDriverException: Message: &quot;Can&#39;t load the profile.
  5. 通过ambari安装hadoop集群(一)
  6. VB6学习笔记
  7. 【oneday_onepage】—— 美国人的仪容整洁与个人卫生
  8. Remove 以及dorp做实验验证MongoDB删除文档后索引是否会自动删除
  9. WaitForSingleObject函数的使用
  10. R语言基本操作函数(1)变量的基本操作