Thread类的实例方法

start()

start方法内部会调用方法start方法启动一个线程,该线程返回start方法,同时Java虚拟机调用native start0启动另一个线程调用run方法,此时有两个线程并行执行;

我们来分析下start0方法,start0到底是如何调用run方法的



Thread类里有一个本地方法叫registerNatives,此方法注册一些本地方法给Thread类使用

OpenJDK官网找到Thread.c

#include "jni.h"
#include "jvm.h" #include "java_lang_Thread.h" #define THD "Ljava/lang/Thread;"
#define OBJ "Ljava/lang/Object;"
#define STE "Ljava/lang/StackTraceElement;" #define ARRAY_LENGTH(a) (sizeof(a)/sizeof(a[0])) static JNINativeMethod methods[] = {
{"start0", "()V", (void *)&JVM_StartThread}, //Java中Thread类的start方法所调用的start0方法
{"stop0", "(" OBJ ")V", (void *)&JVM_StopThread},
{"isAlive", "()Z", (void *)&JVM_IsThreadAlive},
{"suspend0", "()V", (void *)&JVM_SuspendThread},
{"resume0", "()V", (void *)&JVM_ResumeThread},
{"setPriority0", "(I)V", (void *)&JVM_SetThreadPriority},
{"yield", "()V", (void *)&JVM_Yield},
{"sleep", "(J)V", (void *)&JVM_Sleep},
{"currentThread", "()" THD, (void *)&JVM_CurrentThread},
{"countStackFrames", "()I", (void *)&JVM_CountStackFrames},
{"interrupt0", "()V", (void *)&JVM_Interrupt},
{"isInterrupted", "(Z)Z", (void *)&JVM_IsInterrupted},
{"holdsLock", "(" OBJ ")Z", (void *)&JVM_HoldsLock},
{"getThreads", "()[" THD, (void *)&JVM_GetAllThreads},
{"dumpThreads", "([" THD ")[[" STE, (void *)&JVM_DumpThreads},
}; ......

根据关键字"JVM_StartThread"再找到jvm.cpp

JVM_ENTRY(void, JVM_StartThread(JNIEnv* env, jobject jthread))
JVMWrapper("JVM_StartThread");
JavaThread *native_thread = NULL;
bool throw_illegal_thread_state = false; {
MutexLocker mu(Threads_lock);
if (java_lang_Thread::thread(JNIHandles::resolve_non_null(jthread)) != NULL) {
throw_illegal_thread_state = true;
} else { jlong size =
java_lang_Thread::stackSize(JNIHandles::resolve_non_null(jthread));
size_t sz = size > 0 ? (size_t) size : 0;
native_thread = new JavaThread(&thread_entry, sz); //请看这里,实例化了一个线程native_thread if (native_thread->osthread() != NULL) {
// Note: the current thread is not being used within "prepare".
native_thread->prepare(jthread);
}
}
}

sz是大小参数,忽略之,我们看thread_entry是什么

static void thread_entry(JavaThread* thread, TRAPS) {
HandleMark hm(THREAD);
Handle obj(THREAD, thread->threadObj());
JavaValue result(T_VOID);
JavaCalls::call_virtual(&result,
obj,
KlassHandle(THREAD, SystemDictionary::Thread_klass()),
vmSymbols::run_method_name(), //请看这里,jvm调用run_method_name方法
vmSymbols::void_method_signature(),
THREAD);
}

run_method_name在vmSymbols.hpp被定义

  /* common method and field names */
template(run_method_name, "run") //run_method_name的名称是"run"

简言之:当前线程调用start方法通知ThreadGroup当前线程可以运行了,可以被加入了,当前线程启动后,当前线程状态为"Runnable"。另一个线程等待CPU时间片,调用run方法(线程真正执行)。产生一个异步执行的效果;

用start方法来启动线程,真正实现了多线程运行,这时无需等待run方法体代码执行完毕而直接继续执行下面的代码。

代码如下

public class MyThread03 extends Thread{
public void run()
{
try
{
for (int i = 0; i < 3; i++)
{
Thread.sleep((int)(Math.random() * 1000));
System.out.println("run = " + Thread.currentThread().getName());
}
}
catch (InterruptedException e)
{
e.printStackTrace();
}
} public static void main(String[] args)
{
MyThread03 mt = new MyThread03();
mt.start(); try
{
for (int i = 0; i < 3; i++)
{
Thread.sleep((int)(Math.random() * 1000));
System.out.println("run = " + Thread.currentThread().getName());
}
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}

执行结果如下,可以看到,Thead-0和main线程交叉执行,是无序的。很好理解,因为main和Thread-0在争抢CPU资源,这个过程是无序的。

run = main
run = Thread-0
run = main
run = main
run = Thread-0
run = Thread-0

再看一个例子,代码如下

public class MyThread04 extends Thread{
public void run()
{
System.out.println(Thread.currentThread().getName());
} public static void main(String[] args)
{
MyThread04 mt0 = new MyThread04();
MyThread04 mt1 = new MyThread04();
MyThread04 mt2 = new MyThread04(); mt0.start();
mt1.start();
mt2.start();
}
}

执行结果如下

Thread-0
Thread-2
Thread-1

我们依次启动mt0,mt1,mt2,这说明线程启动顺序也是无序的。因为start方法仅仅返回调用,线程想要执行必须得到CPU时间片再执行run方法,CPU时间片的获得是无序的。

run()

run方法是Thread类的一个普通方法,执行run方法其实是单线程执行

public class MyThread05 extends Thread{

    public void run()
{
System.out.println("run = " + Thread.currentThread().getName());
} public static void main(String[] args)
{
MyThread05 mt = new MyThread05();
mt.run(); try
{
for (int i = 0; i < 3; i++)
{
Thread.sleep((int)(Math.random() * 1000));
System.out.println("run = " + Thread.currentThread().getName());
}
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}

输出结果如下

run = main
run = main
run = main
run = main

main线程循环了3次,run方法1次,结果是main线程执行了四次,我们写在run方法体内的被main线程执行,这说明调用run方法执行多线程是不可行的。

isAlive()

判断线程是否存活

public class MyThread06 extends Thread{
public void run()
{
System.out.println("run = " + this.isAlive());
} public static void main(String[] args) throws Exception
{
MyThread06 mt = new MyThread06();
System.out.println("begin == " + mt.isAlive());
mt.start();
Thread.sleep(100);
System.out.println("end == " + mt.isAlive());
}
}

输出结果如下,增加0.1秒延迟,让线程执行完

begin == false
run = true
end == false

可以看到,执行前false,执行中true,执行后false

getId()

返回线程的标识符,线程ID是正值,线程ID在生命周期内不会变化,当线程终止了,线程ID可能会被重用

getName()

返回线程名称

getPriority()和setPriority(int)

返回优先级和设置优先级

优先级越高的线程获取CPU时间片的概率越高

请看如下的例子

public class MyThread07_0 extends Thread{
public void run()
{
System.out.println("MyThread07_0 run priority = " +
this.getPriority());
} public static void main(String[] args)
{
System.out.println("main thread begin, priority = " +
Thread.currentThread().getPriority());
System.out.println("main thread end, priority = " +
Thread.currentThread().getPriority());
MyThread07_0 thread = new MyThread07_0();
thread.start();
}
}

运行结果如下

main thread begin, priority = 5
main thread end, priority = 5
MyThread07_0 run priority = 5



线程的默认优先级是5

再看如下的例子

public class MyThread07_1 extends Thread {

    public void run()
{
System.out.println("MyThread07_1 run priority = " +
this.getPriority());
MyThread07_0 thread = new MyThread07_0();
thread.start();
} public static void main(String[] args)
{
System.out.println("main thread begin, priority = " +
Thread.currentThread().getPriority());
System.out.println("main thread end, priority = " +
Thread.currentThread().getPriority());
MyThread07_1 thread = new MyThread07_1();
thread.start();
}
}

我们在MyThread07_1线程内部启动MyThread07_0线程,我们观察MyThread07_1和MyThread07_0的优先级有什么关系。

运行结果如下

main thread begin, priority = 5
main thread end, priority = 5
MyThread07_1 run priority = 5
MyThread07_0 run priority = 5

MyThread07_0和MyThread07_1线程的优先级一致,说明线程具有继承性。

现在我们来设置优先级

public class MyThread08 {

    static class MyThread08_0 extends Thread {
public void run() {
long beginTime = System.currentTimeMillis();
for (int j = 0; j < 1000000; j++) {}
long endTime = System.currentTimeMillis();
System.out.println("★★★★ MyThread08_0 use time = " +
(endTime - beginTime));
}
} static class MyThread08_1 extends Thread {
public void run()
{
long beginTime = System.currentTimeMillis();
for (int j = 0; j < 1000000; j++){}
long endTime = System.currentTimeMillis();
System.out.println("☆☆☆☆ MyThread08_1 use time = " +
(endTime - beginTime));
}
} public static void main(String[] args)
{
for (int i = 0; i < 5; i++)
{
MyThread08_0 mt0 = new MyThread08_0();
mt0.setPriority(5);
mt0.start();
MyThread08_1 mt1 = new MyThread08_1();
mt1.setPriority(4);
mt1.start();
}
} }

我们给MyThread08_0线程设置更高的优先级5

运行结果如下

★★★★ MyThread08_0 use time = 7
☆☆☆☆ MyThread08_1 use time = 4
★★★★ MyThread08_0 use time = 18
★★★★ MyThread08_0 use time = 16
★★★★ MyThread08_0 use time = 20
★★★★ MyThread08_0 use time = 17
☆☆☆☆ MyThread08_1 use time = 0
☆☆☆☆ MyThread08_1 use time = 10
☆☆☆☆ MyThread08_1 use time = 9
☆☆☆☆ MyThread08_1 use time = 8

可以看到MyThread08_0先执行的次数更多,输出结果为实心五角星的这个。

多运行几次,都会是MyThread08_0先打印完,每次结果都不尽相同,CPU会尽量先让MyThread08_0执行完。

isDaemon()和setDaemon(boolean)

isDaemon方法判断是否是守护线程;

setDaemon设置守护线程

在Java中有两类线程:User Thread(用户线程)、Daemon Thread(守护线程)

我们自定义的线程和main线程都是用户线程,我们熟知的GC(垃圾回收器)就是守护线程。守护线程是用户线程的“奴仆”,当用户线程执行完毕,守护线程就会终止,因为它没有存在的必要了。

如用户线程执行结束,GC无垃圾可回收,它只能死亡

看如下代码

public class MyThread09 extends Thread{
private int i = 0; public void run()
{
try
{
while (true)
{
i++;
System.out.println(Thread.currentThread().getName()+" i = " + i);
Thread.sleep(1000);
}
}
catch (InterruptedException e)
{
e.printStackTrace();
}
} public static void main(String[] args)
{
try
{
MyThread09 mt = new MyThread09();
mt.setDaemon(true);
mt.start();
Thread.sleep(5000);
System.out.println("现在是"+Thread.currentThread().getName()+"线程");
Thread.sleep(1); }
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}

我们自定义MyThread09线程的run方法里是死循环,如果是用户线程,它应该永远地执行下去,现在把它设置成守护线程。

注意:mt.setDaemon(true);要在mt.start();之前,见



否则会抛出IllegalThreadStateException异常

运行结果如下

Thread-0 i = 1
Thread-0 i = 2
Thread-0 i = 3
Thread-0 i = 4
Thread-0 i = 5
现在是main线程
Thread-0 i = 6
MyThread09变成了守护线程,它的使命已经完成。现在是main线程

Thread.sleep(5000)的目的是使main线程沉睡5s,即用户线程(main线程)仍在执行,此时main线程输出,再沉睡1ms,当main线程执行完毕,守护线程就没有存在的意义了,即死亡;

main线程总共执行了大约5001ms(略大于这个数值),Thread-0打印到i=6,说明守护线程在main线程之后死亡,这个时间差极小

interrupt()

设置中断标志位,无法中断线程

public class MyThread10 extends Thread{
public void run()
{
for (int i = 0; i < 500000; i++)
{
System.out.println("i = " + (i + 1));
}
} public static void main(String[] args)
{
try
{
MyThread10 mt = new MyThread10();
mt.start();
Thread.sleep(2000);
mt.interrupt();
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}

输出结果如下

......
i = 499993
i = 499994
i = 499995
i = 499996
i = 499997
i = 499998
i = 499999
i = 500000

可以看到,interrupt()没有中断线程,interrupt()后续将会详细讲解

isInterrupted()

判断线程是否被中断

join()

等待这个线程死亡,举例说明:

线程A执行join方法,会阻塞线程B,线程A join方法执行完毕,才能执行线程B

代码如下

public class MyThread11 extends Thread{
public void run()
{
try
{
int secondValue = (int)(Math.random() * 1000);
System.out.println(secondValue);
Thread.sleep(secondValue);
}
catch (InterruptedException e)
{
e.printStackTrace();
}
} public static void main(String[] args) throws Exception
{
MyThread11 mt = new MyThread11();
mt.start();
mt.join();
System.out.println("MyThread11执行完毕之后我再执行");
}
}

输出结果如下

75
MyThread11执行完毕之后我再执行

可以看到,main线程在mt线程之后执行。mt调用join方法,使main线程阻塞,待mt线程执行完毕,方可执行main线程。

Thread类的静态方法

currentThread()

返回当前正在执行线程的引用

public class MyThread12 extends Thread{

    static
{
System.out.println("静态块的打印:" +
Thread.currentThread().getName());
} public MyThread12()
{
System.out.println("构造方法的打印:" +
Thread.currentThread().getName());
} public void run()
{
System.out.println("run()方法的打印:" +
Thread.currentThread().getName());
} public static void main(String[] args)
{
MyThread12 mt = new MyThread12();
mt.start();
} }

输出结果

静态块的打印:main
构造方法的打印:main
run()方法的打印:Thread-0

可以看到,构造方法和静态块是main线程在调用,重写的run方法是线程自己在调用。

再看个例子

public class MyThread13 extends Thread{
public MyThread13()
{
System.out.println("MyThread13----->Begin");
System.out.println("Thread.currentThread().getName()----->" +
Thread.currentThread().getName());
System.out.println("this.getName()----->" + this.getName());
System.out.println("MyThread13----->end");
} public void run()
{
System.out.println("run----->Begin");
System.out.println("Thread.currentThread().getName()----->" +
Thread.currentThread().getName());
System.out.println("this.getName()----->" + this.getName());
System.out.println("run----->end");
} public static void main(String[] args)
{
MyThread13 mt = new MyThread13();
mt.start();
} }

输出结果

MyThread13----->Begin
Thread.currentThread().getName()----->main
this.getName()----->Thread-0
MyThread13----->end
run----->Begin
Thread.currentThread().getName()----->Thread-0
this.getName()----->Thread-0
run----->end

可以看到,执行MyThread13构造方法的线程是main,执行MyThread13的线程是Thread-0(当前线程),run方法就是被线程实例所执行。

sleep(long)

让当前线程沉睡若干毫秒

public class MyThread14 extends Thread{
public void run()
{
try
{
System.out.println("run threadName = " +
this.getName() + " begin");
Thread.sleep(2000);
System.out.println("run threadName = " +
this.getName() + " end");
}
catch (InterruptedException e)
{
e.printStackTrace();
}
} public static void main(String[] args)
{
MyThread14 mt = new MyThread14();
mt.start();
}
}

输出结果如下

run threadName = Thread-0 begin
run threadName = Thread-0 end

打印完第一句两秒后打印第二句。

yield()

当前线程放弃CPU的使用权,这里的放弃是指当前线程少用CPU资源,最后线程还是会执行完成

public class MyThread15 extends Thread {
public void run()
{
long beginTime = System.currentTimeMillis();
int count = 0;
for (int i = 0; i < 5000000; i++)
{
Thread.yield();
count = count + i + 1;
}
long endTime = System.currentTimeMillis();
System.out.println("用时:" + (endTime - beginTime) + "毫秒!");
} public static void main(String[] args)
{
MyThread15 mt = new MyThread15();
mt.start();
} }

输出结果如下

用时:4210毫秒!

可以看到,任务执行完毕,当我们把Thread.yield();注释掉,执行时间只需要7ms。说明当前线程放弃了一些CPU资源。

interrupted()



判断当前线程是否中断,静态版的isInterrupted方法。多线程中断机制,后续会详细解析。

最新文章

  1. Content is not allowed in prolog ---UTF-8 无bom
  2. Gym 100917J---Judgement(01背包+bitset)
  3. 深入浅出Mybatis-与Spring集成
  4. JS对象之间的关系
  5. HDU5800 To My Girlfriend 背包计数dp
  6. Codeforces Round #130 (Div. 2) A. Dubstep
  7. Delphi 客户端调用Webservice 的TClientdataset 报出“http://www.borland.com/namespaces/Types-IAppServerSOAP”
  8. android--email发送邮件,文本还有附件形式的邮件
  9. Handler案例-简易打地鼠游戏(延时处理消息)
  10. DES加密And解密
  11. 关于int *a[常量]与int (*a)[常量]的分析与区分(详解)
  12. PhoneGap安装手顺
  13. win10系统磁盘占用率高的解决方法,占用100%的问题
  14. 使用Java命令行方式导入第三方jar包来运行Java程序的命令
  15. AspNetPager 控件使用
  16. python3查询数据库并生成excel报表
  17. java实时监控mysql数据库变化
  18. FatSecret Platform API
  19. ibatis自定义数据类型在不支持中文的数据库存储汉字
  20. Codeforces Round #326 (Div. 2) B Duff in Love 简单数论 姿势涨

热门文章

  1. Asyncio之EventLoop笔记
  2. FFmpeg之avformat_alloc_context()
  3. Qt多线程应用--QRunnable
  4. RecyclerView只有一行
  5. Undo Segment/Undo Retention
  6. LC 794. Valid Tic-Tac-Toe State
  7. 定位上下文(补充css的position属性)
  8. React Native的生命周期
  9. Vue和其他框架的区别
  10. xss 学习(一)