这题TM是计数神题......SAM就是个板子,别脑残写错就完事了。有个技巧是快速定位子串,倍增即可。

考虑反着来,就是两个断点切割所有串,求方案数。

大概分类讨论一下......先特判掉一些情况。然后考虑最左右的两个串是否相交。

相交的情况比较友善,先特殊统计有断点在交集中。之后枚举第一个断点切割了1 ~ i个串。第二个断点就切割i+1 ~ m个串。

然后写出一个∑的式子,拆开之后发现维护right集合平方和和right集合相邻元素的乘积即可。

不相交的麻烦点(极其麻烦...)考虑枚举第一个断点切割了1~i个串,这里的i的限制是L ~ R,可以先求出来。

然后继续化简一个∑式子,最后发现要维护的东西差不多。于是这题做完了。

感想:对拍真好用.jpg

 #include <bits/stdc++.h>

 typedef long long LL;
const int N = , M = ; struct Edge {
int nex, v;
}edge[N]; int tp; int tr[N][], fail[N], len[N], rt[N], last = , tot = ;
int ls[M], rs[M], cnt, e[N], ed[N], fa[N][], pw[N];
LL sum0[M], sum2[M], sumd[M], large[M], small[M];
int n, q;
char str[N]; inline void add(int x, int y) {
tp++;
edge[tp].v = y;
edge[tp].nex = e[x];
e[x] = tp;
return;
} inline void pushup(int o) {
if(!ls[o] && !rs[o]) return;
sum0[o] = sum0[ls[o]] + sum0[rs[o]];
sum2[o] = sum2[ls[o]] + sum2[rs[o]];
sumd[o] = sumd[ls[o]] + sumd[rs[o]];
if(ls[o] && rs[o]) sumd[o] += small[rs[o]] * large[ls[o]];
large[o] = std::max(large[ls[o]], large[rs[o]]);
small[o] = std::min(small[ls[o]], small[rs[o]]);
return;
} int merge(int x, int y) {
if(!x || !y) return x | y;
int o = ++cnt;
large[o] = large[x];
small[o] = small[x];
sum0[o] = sum0[x];
sum2[o] = sum2[x];
sumd[o] = sumd[x];
ls[o] = merge(ls[x], ls[y]);
rs[o] = merge(rs[x] ,rs[y]);
pushup(o);
return o;
} void insert(int p, int l, int r, int &o) {
if(!o) o = ++cnt;
if(l == r) {
large[o] = small[o] = r;
sum0[o] = ;
sum2[o] = 1ll * r * r;
sumd[o] = ;
return;
}
int mid = (l + r) >> ;
if(p <= mid) insert(p, l, mid, ls[o]);
else insert(p, mid + , r, rs[o]);
pushup(o);
return;
} inline void insert(char c, int id) {
int f = c - '', p = last, np = ++tot;
last = np;
insert(id, , n, rt[np]);
len[np] = len[p] + ;
while(p && !tr[p][f]) {
tr[p][f] = np;
p = fail[p];
}
if(!p) {
fail[np] = ;
}
else {
int Q = tr[p][f];
if(len[Q] == len[p] + ) {
fail[np] = Q;
}
else {
int nQ = ++tot;
len[nQ] = len[p] + ;
fail[nQ] = fail[Q];
fail[Q] = fail[np] = nQ;
memcpy(tr[nQ], tr[Q], sizeof(tr[Q]));
while(tr[p][f] == Q) {
tr[p][f] = nQ;
p = fail[p];
}
}
}
return;
} int ask0(int L, int R, int l, int r, int o) {
if(!o) return ;
if(L <= l && r <= R) return sum0[o];
int mid = (l + r) >> , ans = ;
if(L <= mid) ans += ask0(L, R, l, mid, ls[o]);
if(mid < R) ans += ask0(L, R, mid + , r, rs[o]);
return ans;
} LL ask2(int L, int R, int l, int r, int o) {
if(!o) return ;
if(L <= l && r <= R) return sum2[o];
int mid = (l + r) >> ;
LL ans = ;
if(L <= mid) ans += ask2(L, R, l, mid, ls[o]);
if(mid < R) ans += ask2(L, R, mid + , r, rs[o]);
return ans;
} LL askd(int L, int R, int l, int r, int o) {
if(!o) return ;
if(L <= l && r <= R) return sumd[o];
int mid = (l + r) >> ;
if(R <= mid) return askd(L, R, l, mid, ls[o]);
if(mid < L) return askd(L, R, mid + , r, rs[o]);
LL ans = askd(L, R, l, mid, ls[o]) + askd(L, R, mid + , r, rs[o]);
if(ls[o] && rs[o]) {
ans += large[ls[o]] * small[rs[o]];
}
return ans;
} int getKpos(int k, int l, int r, int o) {
if(l == r) return r;
int mid = (l + r) >> ;
if(k <= sum0[ls[o]]) return getKpos(k, l, mid, ls[o]);
else return getKpos(k - sum0[ls[o]], mid + , r, rs[o]);
} void DFS(int x) {
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
fa[y][] = x;
DFS(y);
rt[x] = merge(rt[x], rt[y]);
}
return;
} inline void prework() {
for(int i = ; i <= tot; i++) pw[i] = pw[i >> ] + ;
for(int j = ; j <= pw[tot]; j++) {
for(int i = ; i <= tot; i++) {
fa[i][j] = fa[fa[i][j - ]][j - ];
}
}
return;
} inline int getPos(int x, int Len) {
int t = pw[tot];
while(t >= && len[fa[x][]] >= Len) {
if(len[fa[x][t]] >= Len) {
x = fa[x][t];
}
t--;
}
return x;
} inline LL getAns(int Len, int root) { if(Len == ) return ; int r1 = small[root], rn = large[root];
int l1 = r1 - Len + , ln = rn - Len + ; if(ask0(r1 + Len - , ln, , n, root)) {
return ;
}
LL ans = ;
if(r1 > ln) { /// cross
ans = sum2[root] - sumd[root] - 1ll * r1 * rn;
LL temp = (r1 - ln);
ans += (temp - ) * temp / + temp * (n - temp - );
}
else {
int ql = ask0(, r1 + Len - , , n, root), qr = ask0(, ln, , n, root);
int L = qr, R = ql;
int rL = getKpos(L, , n, root), rR = getKpos(R, , n, root), nexr = getKpos(R + , , n, root);
ans = 1ll * (r1 - rR + Len - ) * (nexr - ln) + 1ll * rL * ln - 1ll * rR * ln;
ans += ask2(rL + , rR, , n, root) - askd(rL, rR, , n, root);
}
return ans;
} int main() {
memset(small, 0x3f, sizeof(small));
scanf("%d%d", &n, &q);
scanf("%s", str + );
for(int i = ; i <= n; i++) {
insert(str[i], i);
}
int p = ;
for(int i = ; i <= n; i++) {
int f = str[i] - '';
p = tr[p][f];
ed[i] = p;
//printf("i = %d p = %d \n", i, p);
}
for(int i = ; i <= tot; i++) add(fail[i], i);
DFS();
prework();
LL SUM = 1ll * (n - ) * (n - ) / ;
for(int i = , l, r; i <= q; i++) {
scanf("%d%d", &l, &r);
LL t = getAns(r - l + , rt[getPos(ed[r], r - l + )]);
printf("%lld\n", SUM - t);
}
return ;
}

AC代码

最新文章

  1. GDUFE-OJ 1070上班打卡 ^位运算
  2. W3School-CSS 字体(font)实例
  3. electron打包
  4. Android 启动白屏或者黑屏闪现解决
  5. mfc/格式转换
  6. 使用Maven构件Web应用
  7. POJ 3270 【组合数学】
  8. QT 按钮(4种样式)
  9. Gson 和 Fastjson 你不知道的事
  10. 传输层-TCP
  11. linux删除ORACLE【weber出品必属精品】
  12. php单元测试到底是什么东西呢?
  13. MySQL数据库开发的三十六条军规
  14. node-express-2-jade
  15. Dubbo的三种连接方式
  16. java Page分页显示
  17. angular 2+ 变化检测系列一(基础概念)
  18. DataCommand和DataAdapter
  19. java强引用,软引用,弱引用,虚引用
  20. nginx 配置文件[转]

热门文章

  1. 【学亮IT手记】PL/SQL游标编程
  2. DTW的原理及matlab实现
  3. 【转】使用 lsof 查找打开的文件
  4. Python 构建工具 buildout 的介绍与使用
  5. Python2.7从入门到精通
  6. Windows上安装 TensorFlow及简单命令
  7. 洛谷P3389 【模板】高斯消元法
  8. Spring 使用介绍(十一)—— Spring事件
  9. [BZOJ 2083] [POI 2010] Intelligence test
  10. BZOJ3239Discrete Logging——BSGS