原文地址:http://spaces.ac.cn/archives/3154/
原文作者:苏剑林


标准思路
简单来说,\(n\)维球体积就是如下\(n\)重积分
\[V_n(r)=\int_{x_1^2+x_2^2+\dots+x_n^2\leq r^2}\mathrm{d}x_1 \mathrm{d}x_2\dots \mathrm{d}x_n\]
用更加几何的思路,我们通过一组平行面(\(n−1\)维的平行面)分割,使得n维球分解为一系列近似小柱体,因此,可以得到递推公式
\[V_n (r)=\int_{-r}^r V_{n-1} \left(\sqrt{r^2-t^2}\right)\mathrm{d}t\]
设\(t=r\sin\theta_1\),就有
\[V_n (r)=r\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_{n-1} \left(r\cos\theta_1\right)\cos\theta_1 \mathrm{d}\theta_1\]
迭代一次就有
\[V_n (r)=r^2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_{n-2} \left(r\cos\theta_1\cos\theta_2\right)\cos\theta_1\cos^2\theta_2 \mathrm{d}\theta_1 \mathrm{d}\theta_2\]
迭代\(n−1\)次
\[\begin{align*}V_n (r)=&r^{n-1}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\dots\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_1\left(r\cos\theta_1\cos\theta_2\dots \cos\theta_{n-1}\right)\times\\
&\cos\theta_1\cos^2\theta_2\dots\cos^{n-1}\theta_{n-1} \mathrm{d}\theta_1 \mathrm{d}\theta_2\dots \mathrm{d}\theta_{n-1}\end{align*}\]
其中\(V_1(r)=2r\),即两倍半径长的线段。从而
\[V_n (r)=2r^{n}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\dots\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2\theta_1\cos^3\theta_2\dots\cos^{n}\theta_{n-1} \mathrm{d}\theta_1 \mathrm{d}\theta_2\dots \mathrm{d}\theta_{n-1}\]
完成这个积分,最终就得到n维球体积的公式,这个积分自然是可以求出来的(只是\(n−1\)个一维积分的乘积)。但是这样的步骤太不容易了,为了将其跟伽马函数联系起来,还要做很多工作。总的来说,这是一个不容易记忆、也不怎么漂亮的标准方法。


绝妙思路
有一个利用高斯积分的绝妙技巧,能够帮助我们直接将球体积跟伽马函数联系起来,整个过程堪称鬼斧神工,而且给人“仅此一家,别无分号”的感觉。据说这个技巧为物理系学生所知晓,我是从百读文库看到的,原始来源则是《热力学与统计力学》顾莱纳(德),例5.2 理想气体的熵的统计计算。

这一绝妙的思路,始于我们用两种不同的思路计算高斯积分
\[\begin{align*}
G(n)=\int_{-\infty}^{+\infty}\dots\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} \exp\left(-x_1^2-x_2^2-\dots-x_n^2\right)\mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n\tag{1}
\end{align*}\]
一方面,将\((1)\)当作\(n\)次累次积分,因为我们已经算得
\[\int_{-\infty}^{+\infty}\exp(-t^2)\mathrm{d}t=\sqrt{\pi}\]
而\((1)\)只不过是这样的\(n\)个积分的乘积,因此
\[\begin{align*}
G(n)=\pi^{n/2}\tag{2}
\end{align*}\]
另一方面,将\((1)\)当作\(n\)重积分,由于积分变量只是跟径向长度\(r=\sqrt{x_1^2+x_2^2+\dots+x_n^2}\)有关的变量,因此很容易联想到球坐标,在\(n\)维空间中,可以称为“超球坐标”,不需要将超球坐标完整写出来,只需要注意到,球内的积分,可以化为先对“球壳”进行积分,然后再对球半径进行积分。
\[\begin{align*}
G(n)=\int_{0}^{+\infty}\mathrm{d}r\int_{S_n(r)}\exp\left(-r^2\right)\mathrm{d}S_n\tag{3}
\end{align*}\]
这里的\(S_n(r)\)是半径为\(r\)的\(n\)维球体表面(以及表面积,在不至于混淆的情况下,这里不作区分)。但是注意到,被积函数只跟\(r\)有关,因此对球表面进行积分,等价于原函数乘以球的表面积而已,因此\((2)\)式的结果为
\[\begin{align*}
G(n)=\int_{0}^{+\infty}\mathrm{d}r\exp\left(-r^2\right)S_n(r)\tag{4}
\end{align*}\]
虽然我们不知道\(n\)维球的体积和表面积公式,但是我们可以肯定,\(n\)维球的体积一定正比于\(r^n\),即有
\[V_n (r)=V_n(1)r^n\]
球的表面积,就是球体积的一阶导数(考虑球壳分割),那么
\[S_n (r)=n V_n(1)r^{n-1}\]
代入\((4)\),得到
\[\begin{align*}G(n)=&n V_n(1)\int_{0}^{+\infty}r^{n-1}\exp\left(-r^2\right)\mathrm{d}r\\
=&\frac{1}{2}n V_n(1)\int_{0}^{+\infty}(r^2)^{n/2-1}\exp\left(-r^2\right)\mathrm{d}(r^2)\\
=&\frac{1}{2}n V_n(1)\int_{0}^{+\infty}z^{n/2-1}\exp\left(-z\right)\mathrm{d}z\quad\left(z=r^2\right)\\
=&\frac{1}{2}n V_n(1)\Gamma\left(\frac{n}{2}\right)\tag{5}\end{align*}\]
结合\((2)\)得
\[\pi^{n/2}=G(n)=\frac{1}{2}n V_n(1)\Gamma\left(\frac{n}{2}\right)\]
从而
\[V_n(1)=\frac{\pi^{n/2}}{\frac{1}{2}n\Gamma\left(\dfrac{n}{2}\right)}=\frac{\pi^{n/2}}{\Gamma\left(\dfrac{n}{2}+1\right)}\]
最后
\[\Large\boxed{\displaystyle V_n(r)=\frac{\pi^{n/2}}{\Gamma\left(\dfrac{n}{2}+1\right)}r^n}\]
就这样得到了\(n\)维球体积公式!!对\(r\)求导得到\(n\)维球表面积公式
\[\Large\boxed{\displaystyle S_n(r)=\frac{2\pi^{n/2}}{\Gamma\left(\dfrac{n}{2}\right)}r^{n-1}}\]
结合前后两个方法,就得到
\[\large\boxed{\displaystyle \color{red}{\frac{\pi^{n/2}}{\Gamma\left(\dfrac{n}{2}+1\right)}=2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\dots\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2\theta_1\cos^3\theta_2\dots\cos^{n}\theta_{n-1} \mathrm{d}\theta_1 \mathrm{d}\theta_2\dots \mathrm{d}\theta_{n-1}}}\]

最新文章

  1. js简单的设置快捷键,hotkeys捕获键盘键和组合键的输入
  2. TPC-H生成.tbl文件导入postgresql数据库的坑
  3. Intent启动一个新的页面
  4. 获得省市 json 后台代码
  5. 可进行JavaScript代码测试与调试的12个网站
  6. c#线程问题(2)
  7. eclipse中web项目部署以后jsp的java文件找不到问题(Tomcat配置serverlocations)
  8. linq学习笔记:将List<T> 转换为 Dictionary<T Key,T Value>
  9. ssh登录命令(转)
  10. 【SignalR学习系列】1. SignalR理论介绍
  11. vs Code 运行一个本地WEB服务器
  12. vue关于数组使用的坑
  13. Eclipse 使用 VS Emulator for android 调试环境配置 步骤
  14. 17秋 软件工程 第六次作业 Beta冲刺 Scrum2
  15. Robot framework selenium driver download
  16. python实现并发爬虫
  17. Java提高篇(转)
  18. bzoj 3795: 魏总刷DP
  19. 使用Homebrew安装Git与Github在idea中的配置
  20. (1)StringBuilder类和StringBuffer类 (2)日期相关的类 (3)集合框架 (4)List集合

热门文章

  1. Hive0.13_函数
  2. Web基础-Uri跟Url的区别
  3. Fragment应用
  4. 阿里云linux挂载云盘
  5. SSM项目中的.tld文件是什么,有什么作用?怎么自定义tld文件
  6. Oracle查询当前用户和当前用户下的所有表
  7. 关于jquery ajax不执行success回调函数
  8. 【Unity|C#】基础篇(0)——C#与.NET框架
  9. 关于Javaweb的比较好用的jar包概述
  10. 2019kali安装以及汉化