Proximal Algorithms

这一节,介绍并行算法的实现.

问题的结构

令\([n] = \{1, \ldots, n\}\). 给定\(c \subseteq [n]\), 让\(x_c \in \mathbb{R}^{|c|}\)表示向量\(x\in \mathbb{R}^n\)的一个子向量(以\(c\)为指标的对应部分).当\(\mathcal{P}=\{c_1, \ldots, c_N\}\)满足:

\[\cup \mathcal{P} = [n] \\
c_i \cap c_j = \emptyset, i \ne j
\]

时, 称\(\mathcal{P}\)为\([n]\)的一个分割.

函数\(f\)的\(\mathcal{P}-\)分割满足:

\[f(x) = \sum_{i=1}^N f_i (x_{c_i})
\]

其中\(f_i : \mathbb{R}^{|c_i|} \rightarrow \mathbb{R}\).

在这种情况下:

\[(\mathbf{prox}_f(v))_i = \mathbf{prox}_{f_i}(v_i)
\]

所以,可以并行计算.

考虑下面的问题:

\[\mathrm{minimize} \quad f(x) + g(x)
\]

如果假设\(f\)是\(\mathcal{P}-\)分割的, 而\(g\)是\(\mathcal{Q}-\)分割的,那么问题等价于:



于是ADMM可以并行计算:

consensus

考虑下列问题如何进行并行计算:

\[\mathrm{minimize} \quad f(x) = \sum_{i=1}^N f_i (x)
\]

一个非常巧妙的变化:



可以看到,这样子,函数就是可分了, 只是多了一个附加条件.

将上面的问题转化为:

\[\mathrm{minimize} \quad \sum_{i=1}^N f_i(x_i) + I_{\mathcal{C}} (x_1, \ldots, x_N)
\]

其中\(\mathcal{C}\)是consensus set:

\[\mathcal{C} = \{(x_1, \ldots, x_N)| x_1 = \ldots, =x_N\}
\]

这样,问题就变成俩个可分函数了, 不过需要注意的是,二者的分割并不相同:

\[\mathcal{P} = \{[n], n+[n], 2n + [n], \ldots, (N-1)n + [n]\}
\]

而\(\mathcal{Q}\),即\(I_{\mathcal{C}}\)的分割为:

\[\mathcal{Q} = \{\{i, n+i, 2n + i, \ldots, (N-1)n + i\}|i=1, 2, \ldots, n\}
\]

注: 文中是\(i=1, 2, \ldots, N\)(我认为是作者的笔误).

这个时候的ADMM的第二步,即更新\(z\),可以直接为:

\[z_i = \bar{z} = (1/N) \sum_{i=1}^N z_i
\]



作者贴了一个比较形象的图来表示这种分割:

更为一般的情况

考虑下面的问题:

\[\mathrm{minimize} \quad f(x) = \sum_{i=1}^N f_i (x_{c_i})
\]

其中\(c_i \subseteq [n]\), 但是\(c_i \cap c_j, i \ne j\)并不一定为空集.

进行同样的转换:



其中

\[\mathcal{C} = \{(z_1, \ldots, z_N) | (z_i)_k = (z_j)_k \quad if \: k \in c_i \cap c_j\}
\]

同样等价于:

\[\mathrm{minimize} \quad \sum_{i=1}^N f_i(z_i) + I_{\mathcal{C}} (z_1, \ldots, z_N)
\]

相应的有一张比较形象的图:



前一部分的分割是类似的, 后一部分的分割,就是怎么说呢,就像图上的行一样的分.

ADMM为:



其中\(F_i = \{j \in [N] | i \in c_j\}\)

Exchange 问题

Global exchange

交换问题具有如下形式:



可以用一个实际问题来考量,每个\(i\)表示一个客户,\(x_i\)表示每个客户给予或者得到的总量,而\(f_i(x_i)\)表示该客户的效益,\(\sum_{i=1}^Nx_i=0\)这个条件表示,所以客户东西的总量是固定的,即收支平衡.

我们可以将此问题转化为(这个方法太好使了吧):

\[\mathrm{minimize} \quad \sum_{i=1}^N f_i(x_i) + I_{\mathcal{C}}(x_1, \ldots, x_N)
\]

其中

\[\mathcal{C} = \{(x_1, \ldots, x_N)\in \mathbb{R}^{nN} | x_1 + x_2 + \ldots + x_N=0\}
\]

我们知道,指示函数的proximal为投影算子, 于是:

\[(\Pi_{\mathcal{C}}(v_1, \ldots, v_N))_i = v_i - \bar{v}
\]

于是ADMM算法为:

更为一般的情况

有些时候,并不是所有客户都面对同一个市场,所以,每个\(x_i\)的维度什么对的也有区别:

\[\mathcal{C} = \Big \{ (z_1, \ldots, z_N) \Big| \sum_{i : k \in c_i} (z_i)_k =0 \Big \}
\]

有点和consenus的一般情况比较类似.

Allocation

allocation problem:



其中\(x_i \in \mathbb{R}^n\).

这个问题和交换问题也是相似的,区别在于总量\(b\), 而且要求\(x_i \ge 0\).

类似的,我们可以将上面的问题改写为:

\[\mathrm{minimize} \quad \sum_{i=1}^N f_i(x_i) + I_{\mathcal{C}} (x_1, \ldots, x_N)
\]

其中:

\[\mathcal{C} = \{(x_1, \ldots, x_N)| x_i \ge 0, x_1 + \ldots + x_N = b\}
\]

所以相应的算法是:



如何进行投影,会在下一节提到, 还有更加一般的情况,比如\(\sum_{i=1}^N x_i \le b\).

最新文章

  1. Spark——共享变量
  2. Javascript对象的方法赋值
  3. SPSS数据分析—多维偏好分析(MPA)
  4. 部署war包后,新增tomcat服务器,启动tomcat服务器报错解决方法
  5. getaddrinfo function
  6. 用AXIS2发布WebService的方法
  7. solr学习之添加文档
  8. lightoj 1022
  9. SQL SERVER 高级编程 - 自定义函数 拾忆
  10. Windows 系统版本判断
  11. 【项目】git的部署使用
  12. Beta阶段事后诸葛亮分析
  13. 《java.util.concurrent 包源码阅读》15 线程池系列之ScheduledThreadPoolExecutor 第二部分
  14. Project file is incomplete. Expected imports are missing 错误解决方案
  15. C#断点调试时属性get块逻辑执行多次
  16. Hexo博客部署-使用github作为保存中转仓库
  17. Java基础18:Java序列化与反序列化
  18. Opencv-Python No module named 'cv2.cv2'
  19. JS 事件循环机制 - 任务队列、web API、JS主线程的相互协同
  20. [bug] 验证selenium的显式和隐式等待而发现的一个低级错误

热门文章

  1. A Child's History of England.13
  2. Hive(一)【基本概念、安装】
  3. 复制virtualbox虚拟硬盘
  4. GO瞬间并发数控制
  5. 【编程思想】【设计模式】【结构模式Structural】门面模式/外观模式Facade
  6. 【Linux】【Services】【MessageQueue】搭建高可用rabbitMQ
  7. 理解inode以及软硬连接,和inode磁盘爆满的解决方案以及文件权限
  8. 【Java 调优】Java性能优化
  9. Intellij IDEA设置自定义类描述信息
  10. ssm项目中常用的上传文件