生成水印

在本节中,您将了解 Flink 提供的 API,用于处理事件时间时间戳和水印。关于事件时间、处理时间和摄取时间的介绍,请参考事件时间的介绍。

水印策略介绍

为了使用事件时间,Flink需要知道事件的时间戳,这意味着流中的每个元素都需要分配其事件时间戳。这通常是通过使用TimestampAssigner从元素中的某个字段访问/提取时间戳来完成的。

时间戳分配与生成水印是同步进行的,水印告诉系统事件时间的进展。你可以通过指定一个WatermarkGenerator来配置。

Flink API期望一个WatermarkStrategy,其中包含一个TimestampAssigner和WatermarkGenerator。一些常见的策略作为WatermarkStrategy上的静态方法是开箱即用的,但用户也可以在需要时建立自己的策略。

为了完整起见,下面的是接口

public interface WatermarkStrategy<T> extends TimestampAssignerSupplier<T>, WatermarkGeneratorSupplier<T>{

    /**
* Instantiates a {@link TimestampAssigner} for assigning timestamps according to this
* strategy.
*/
@Override
TimestampAssigner<T> createTimestampAssigner(TimestampAssignerSupplier.Context context); /**
* Instantiates a WatermarkGenerator that generates watermarks according to this strategy.
*/
@Override
WatermarkGenerator<T> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context);
}

  

如前所述,你通常不会自己实现这个接口,而是使用WatermarkStrategy上的静态帮助方法来实现常见的水印策略,或者将自定义的TimestampAssigner与WatermarkGenerator捆绑在一起。例如,要使用有界无序水印和lambda函数作为时间戳分配器,你可以使用这个方法。

WatermarkStrategy
.forBoundedOutOfOrderness[(Long, String)](Duration.ofSeconds(20))
.withTimestampAssigner(new SerializableTimestampAssigner[(Long, String)] {
override def extractTimestamp(element: (Long, String), recordTimestamp: Long): Long = element._1
})

  

(在这里使用Scala Lambdas目前是行不通的,因为Scala很笨,很难支持这个。#fus)

指定一个TimestampAssigner是可选的,在大多数情况下,你其实并不想指定一个。例如,当使用Kafka或Kinesis时,你会直接从Kafka/Kinesis记录中获取时间戳。

我们将在后面的WatermarkGenerator编写中查看WatermarkGenerator接口。

注意:时间戳和水印都是在Kafka/Kinesis中获取的。时间戳和水印都被指定为自1970-01-01T00:00:00Z的Java纪元以来的毫秒。

使用水印策略

在Flink应用中,有两个地方可以使用WatermarkStrategy。1)直接在源上使用,2)在非源操作后使用。

第一个选项是比较好的,因为它允许源在水印逻辑中利用关于碎片/分区/分割的知识。源通常可以更精细地跟踪水印,源产生的整体水印也会更准确。直接在源上指定WatermarkStrategy通常意味着你必须使用源的特定接口/请参阅Watermark Strategies和Kafka Connector,以了解在Kafka Connector上如何工作,以及关于每个分区水印如何工作的更多细节。

第二个选项(在任意操作后设置WatermarkStrategy)只应在不能直接在源上设置策略时使用。

val env = StreamExecutionEnvironment.getExecutionEnvironment

val stream: DataStream[MyEvent] = env.readFile(
myFormat, myFilePath, FileProcessingMode.PROCESS_CONTINUOUSLY, 100,
FilePathFilter.createDefaultFilter()) val withTimestampsAndWatermarks: DataStream[MyEvent] = stream
.filter( _.severity == WARNING )
.assignTimestampsAndWatermarks(<watermark strategy>) withTimestampsAndWatermarks
.keyBy( _.getGroup )
.window(TumblingEventTimeWindows.of(Time.seconds(10)))
.reduce( (a, b) => a.add(b) )
.addSink(...)

  

以这种方式使用WatermarkStrategy,可以获取一个流并生成一个带有时间戳元素和水印的新流。如果原始流已经有时间戳和/或水印,时间戳分配器会覆盖它们。

处理闲置数据源

如果其中一个输入分割/分区/碎片在一段时间内没有携带事件,这意味着WatermarkGenerator也没有得到任何新的信息来作为水印的基础。我们称之为空闲输入或空闲源。这是一个问题,因为有可能发生你的一些分区仍然携带事件。在这种情况下,水印将被保留下来,因为它是作为所有不同的并行水印的最小值计算的。

为了处理这个问题,你可以使用WatermarkStrategy来检测空闲,并将一个输入标记为空闲。WatermarkStrategy为此提供了一个方便的助手。

WatermarkStrategy
.forBoundedOutOfOrderness[(Long, String)](Duration.ofSeconds(20))
.withIdleness(Duration.ofMinutes(1))

  

编写水印生成器

时间戳分配器(TimestampAssigner)是一个从事件中提取字段的简单函数,因此我们不需要详细研究它们。而WatermarkGenerator的编写就比较复杂了,我们将在接下来的两节中看如何做。这就是WatermarkGenerator的界面。

/**
* The {@code WatermarkGenerator} generates watermarks either based on events or
* periodically (in a fixed interval).
*
* <p><b>Note:</b> This WatermarkGenerator subsumes the previous distinction between the
* {@code AssignerWithPunctuatedWatermarks} and the {@code AssignerWithPeriodicWatermarks}.
*/
@Public
public interface WatermarkGenerator<T> { /**
* Called for every event, allows the watermark generator to examine and remember the
* event timestamps, or to emit a watermark based on the event itself.
*/
void onEvent(T event, long eventTimestamp, WatermarkOutput output); /**
* Called periodically, and might emit a new watermark, or not.
*
* <p>The interval in which this method is called and Watermarks are generated
* depends on {@link ExecutionConfig#getAutoWatermarkInterval()}.
*/
void onPeriodicEmit(WatermarkOutput output);
}

  

有两种不同风格的水印生成器:周期性和标点式。

周期性生成器通常会通过onEvent()观察传入的事件,然后在框架调用onPeriodicEmit()时发出水印。

puncutated生成器会观察onEvent()中的事件,并等待流中携带水印信息的特殊标记事件或标点。当它看到这些事件之一时,就会立即发出一个水印。通常,标点生成器不会从onPeriodicEmit()发出水印。

接下来我们将看看如何实现每种样式的生成器。

编写一个周期性的水印生成器

周期性生成器观察流事件并周期性地生成水印(可能取决于流元素,或者纯粹基于处理时间)。

生成水印的间隔(每n毫秒)通过ExecutionConfig.setAutoWatermarkInterval(...)来定义。每次都会调用生成器的onPeriodicEmit()方法,如果返回的水印是非空的,并且大于前一个水印,就会发出一个新的水印。

这里我们展示了两个使用周期性水印生成器的简单例子。请注意,Flink提供了BoundedOutfOrdernessWatermarks,这是一个WatermarkGenerator,它的工作原理与下面所示的BoundedOutfOrdernessGenerator类似。你可以在这里阅读关于如何使用它。

/**
* This generator generates watermarks assuming that elements arrive out of order,
* but only to a certain degree. The latest elements for a certain timestamp t will arrive
* at most n milliseconds after the earliest elements for timestamp t.
*/
class BoundedOutOfOrdernessGenerator extends AssignerWithPeriodicWatermarks[MyEvent] { val maxOutOfOrderness = 3500L // 3.5 seconds var currentMaxTimestamp: Long = _ override def onEvent(element: MyEvent, eventTimestamp: Long): Unit = {
currentMaxTimestamp = max(eventTimestamp, currentMaxTimestamp)
} override def onPeriodicEmit(): Unit = {
// emit the watermark as current highest timestamp minus the out-of-orderness bound
output.emitWatermark(new Watermark(currentMaxTimestamp - maxOutOfOrderness - 1));
}
} /**
* This generator generates watermarks that are lagging behind processing time by a fixed amount.
* It assumes that elements arrive in Flink after a bounded delay.
*/
class TimeLagWatermarkGenerator extends AssignerWithPeriodicWatermarks[MyEvent] { val maxTimeLag = 5000L // 5 seconds override def onEvent(element: MyEvent, eventTimestamp: Long): Unit = {
// don't need to do anything because we work on processing time
} override def onPeriodicEmit(): Unit = {
output.emitWatermark(new Watermark(System.currentTimeMillis() - maxTimeLag));
}
}

  

编写一个标点水印生成器

标点水印生成器将观察事件流,每当它看到一个携带水印信息的特殊元素时,就会发出一个水印。

这就是如何实现一个标点水印生成器,每当一个事件表明它携带某个标记时,它就会发射一个水印。

class PunctuatedAssigner extends AssignerWithPunctuatedWatermarks[MyEvent] {

    override def onEvent(element: MyEvent, eventTimestamp: Long): Unit = {
if (event.hasWatermarkMarker()) {
output.emitWatermark(new Watermark(event.getWatermarkTimestamp()))
}
} override def onPeriodicEmit(): Unit = {
// don't need to do anything because we emit in reaction to events above
}
}

  

注:可以对每个事件生成一个水印。但是,由于每个水印都会引起下游的一些计算,因此过多的水印会降低性能。

水印策略与Kafka连接器

当使用Apache Kafka作为数据源时,每个Kafka分区可能有一个简单的事件时间模式(升序时间戳或有界失序)。然而,当消耗来自Kafka的流时,多个分区经常会被并行消耗,交织来自分区的事件,并破坏每个分区的模式(这是Kafka的消费者客户端的固有工作方式)。

在这种情况下,你可以使用Flink的Kafka-partition-aware水印生成功能。使用该功能,在Kafka消费者内部,按Kafka分区生成水印,每个分区水印的合并方式与流洗牌的水印合并方式相同。

例如,如果每个Kafka分区的事件时间戳是严格的升序,那么用升序时间戳水印生成器生成每个分区的水印,会得到完美的整体水印。请注意,我们在示例中并没有提供TimestampAssigner,而是使用Kafka记录本身的时间戳。

下面的插图展示了如何使用per-Kafka-partition水印生成器,以及在这种情况下水印如何通过流式数据流传播。

val kafkaSource = new FlinkKafkaConsumer[MyType]("myTopic", schema, props)
kafkaSource.assignTimestampsAndWatermarks(
WatermarkStrategy
.forBoundedOutOfOrderness(Duration.ofSeconds(20))) val stream: DataStream[MyType] = env.addSource(kafkaSource)

  

操作符如何处理水印

作为一般规则,操作者在向下游转发一个给定的水印之前,需要对其进行完全处理。例如,WindowOperator将首先评估所有应该被发射的窗口,只有在产生所有由水印触发的输出后,水印本身才会被发送到下游。换句话说,所有因发生水印而产生的元素将在水印之前被发射。

同样的规则也适用于TwoInputStreamOperator。然而,在这种情况下,运算器的当前水印被定义为其两个输入的最小值。

这种行为的细节由OneInputStreamOperator#processWatermark、TwoInputStreamOperator#processWatermark1和TwoInputStreamOperator#processWatermark2方法的实现来定义。

废弃的AssignerWithPeriodicWatermarks和AssignerWithPunctuatedWatermarks

在引入当前的WatermarkStrategy、TimestampAssigner和WatermarkGenerator抽象之前,Flink使用了AssignerWithPeriodicWatermarks和AssignerWithPunctuatedWatermarks。你仍然会在API中看到它们,但建议使用新的接口,因为它们提供了更清晰的分离关注点,而且还统一了水印生成的周期和标点样式。

最新文章

  1. ★Kali信息收集~★6.Dmitry:汇总收集
  2. Objective-C中的Block(闭包)
  3. Ubuntu系统的安装与使用 深度音乐播放器
  4. emmet插件学习,练习中遇到一些问题
  5. $.each()
  6. JavaScript操作数组
  7. 欢迎加入iOS开发初学者交流群:180080550
  8. mybatis(一)安装
  9. 模板引擎逻辑语句处理之对单层for循环的处理
  10. c# winform 路径选择和文件读写
  11. mybatis以序列周期,同样处理的这个问题的价值
  12. Akka(4): Routers - 智能任务分配
  13. ADO.NET中SQL Server数据库连接池
  14. jQuery 捕获
  15. Web系统大规模并发:电商秒杀与抢购-----面试必问
  16. jdbc增删改查进行封装
  17. 浏览器开发者工具----F12 功能介绍
  18. Python 学习 第十一篇:numpy
  19. Dictionary CPU 100%
  20. openx -书表添加字段

热门文章

  1. Docker环境下升级PostgreSQL
  2. docker frps 内网穿透容器化服务
  3. Angular入门到精通系列教程(4)- 开发环境搭建以及入手项目
  4. 关于 RNN 循环神经网络的反向传播求导
  5. 巧用 Lazy 解决.NET Core中的循环依赖关系
  6. SpringMVC文件的上传与下载实现
  7. self-taught CS resouce recommendation
  8. Neo4j 图数据库查询
  9. 攻防世界—pwn—hello_pwn
  10. oracle动态采样导致数据库出现大量cursor pin s wait on x等待