概要

消息查询是什么?

消息查询就是根据用户提供的msgId从MQ中取出该消息

RocketMQ如果有多个节点如何查询?

问题:RocketMQ分布式结构中,数据分散在各个节点,即便是同一Topic的数据,也未必都在一个broker上。客户端怎么知道数据该去哪个节点上查?

猜想1:逐个访问broker节点查询数据

猜想2:有某种数据中心存在,该中心知道所有消息存储的位置,只要向该中心查询即可得到消息具体位置,进而取得消息内容

实际:

1.消息Id中含有消息所在的broker的地址信息(IP\Port)以及该消息在CommitLog中的偏移量。

2.客户端实现会从msgId字符串中解析出broker地址,向指定broker节查询消息。

问题:CommitLog文件有多个,只有偏移量估计不能确定在哪个文件吧?

实际:单个Broker节点内offset是全局唯一的,不是每个CommitLog文件的偏移量都是从0开始的。单个节点内所有CommitLog文件共用一套偏移量,每个文件的文件名为其第一个消息的偏移量。所以可以根据偏移量和文件名确定CommitLog文件。

源码阅读

0.使用方式

MessageExt  msg = consumer.viewMessage(msgId);

1.消息ID解析

这个了解下就可以了

public class MessageId {
private SocketAddress address;
private long offset; public MessageId(SocketAddress address, long offset) {
this.address = address;
this.offset = offset;
} //get-set
} //from MQAdminImpl.java
public MessageExt viewMessage(
String msgId) throws RemotingException, MQBrokerException, InterruptedException, MQClientException { MessageId messageId = null;
try {
//从msgId字符串中解析出address和offset
//address = ip:port
//offset为消息在CommitLog文件中的偏移量
messageId = MessageDecoder.decodeMessageId(msgId);
} catch (Exception e) {
throw new MQClientException(ResponseCode.NO_MESSAGE, "query message by id finished, but no message.");
}
return this.mQClientFactory.getMQClientAPIImpl().viewMessage(RemotingUtil.socketAddress2String(messageId.getAddress()),
messageId.getOffset(), timeoutMillis);
} //from MessageDecoder.java
public static MessageId decodeMessageId(final String msgId) throws UnknownHostException {
SocketAddress address;
long offset;
//ipv4和ipv6的区别
//如果msgId总长度超过32字符,则为ipv6
int ipLength = msgId.length() == 32 ? 4 * 2 : 16 * 2; byte[] ip = UtilAll.string2bytes(msgId.substring(0, ipLength));
byte[] port = UtilAll.string2bytes(msgId.substring(ipLength, ipLength + 8));
ByteBuffer bb = ByteBuffer.wrap(port);
int portInt = bb.getInt(0);
address = new InetSocketAddress(InetAddress.getByAddress(ip), portInt); // offset
byte[] data = UtilAll.string2bytes(msgId.substring(ipLength + 8, ipLength + 8 + 16));
bb = ByteBuffer.wrap(data);
offset = bb.getLong(0); return new MessageId(address, offset);
}

2.长连接客户端RPC实现

要发请求首先得先建立连接,这里方法可以看到创建连接相关的操作。值得注意的是,第一次访问的时候可能连接还没建立,建立连接需要消耗一段时间。代码中对这个时间也做了判断,如果连接建立完成后,发现已经超时,则不再发出请求。目的应该是尽可能减少请求线程的阻塞时间。

//from NettyRemotingClient.java
@Override
public RemotingCommand invokeSync(String addr, final RemotingCommand request, long timeoutMillis)
throws InterruptedException, RemotingConnectException, RemotingSendRequestException, RemotingTimeoutException {
long beginStartTime = System.currentTimeMillis();
//这里会先检查有无该地址的通道,有则返回,无则创建
final Channel channel = this.getAndCreateChannel(addr);
if (channel != null && channel.isActive()) {
try {
//前置钩子
doBeforeRpcHooks(addr, request);
//判断通道建立完成时是否已到达超时时间,如果超时直接抛出异常。不发请求
long costTime = System.currentTimeMillis() - beginStartTime;
if (timeoutMillis < costTime) {
throw new RemotingTimeoutException("invokeSync call timeout");
}
//同步调用
RemotingCommand response = this.invokeSyncImpl(channel, request, timeoutMillis - costTime);
//后置钩子
doAfterRpcHooks(RemotingHelper.parseChannelRemoteAddr(channel), request, response); //后置钩子
return response;
} catch (RemotingSendRequestException e) {
log.warn("invokeSync: send request exception, so close the channel[{}]", addr);
this.closeChannel(addr, channel);
throw e;
} catch (RemotingTimeoutException e) {
if (nettyClientConfig.isClientCloseSocketIfTimeout()) {
this.closeChannel(addr, channel);
log.warn("invokeSync: close socket because of timeout, {}ms, {}", timeoutMillis, addr);
}
log.warn("invokeSync: wait response timeout exception, the channel[{}]", addr);
throw e;
}
} else {
this.closeChannel(addr, channel);
throw new RemotingConnectException(addr);
}
}

下一步看看它的同步调用做了什么处理。注意到它会构建一个Future对象加入待响应池,发出请求报文后就挂起线程,然后等待唤醒(waitResponse内部使用CountDownLatch等待)。

//from NettyRemotingAbstract.java
public RemotingCommand invokeSyncImpl(final Channel channel, final RemotingCommand request,
final long timeoutMillis)
throws InterruptedException, RemotingSendRequestException, RemotingTimeoutException {
//请求id
final int opaque = request.getOpaque(); try {
//请求存根
final ResponseFuture responseFuture = new ResponseFuture(channel, opaque, timeoutMillis, null, null);
//加入待响应的请求池
this.responseTable.put(opaque, responseFuture);
final SocketAddress addr = channel.remoteAddress();
//将请求发出,成功发出时更新状态
channel.writeAndFlush(request).addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture f) throws Exception {
if (f.isSuccess()) { //若成功发出,更新请求状态为“已发出”
responseFuture.setSendRequestOK(true);
return;
} else {
responseFuture.setSendRequestOK(false);
} //若发出失败,则从池中移除(没用了,释放资源)
responseTable.remove(opaque);
responseFuture.setCause(f.cause());
//putResponse的时候会唤醒等待的线程
responseFuture.putResponse(null);
log.warn("send a request command to channel <" + addr + "> failed.");
}
}); //只等待一段时间,不会一直等下去
//若正常响应,则收到响应后,此线程会被唤醒,继续执行下去
//若超时,则到达该时间后线程苏醒,继续执行
RemotingCommand responseCommand = responseFuture.waitResponse(timeoutMillis);
if (null == responseCommand) {
if (responseFuture.isSendRequestOK()) {
throw new RemotingTimeoutException(RemotingHelper.parseSocketAddressAddr(addr), timeoutMillis,
responseFuture.getCause());
} else {
throw new RemotingSendRequestException(RemotingHelper.parseSocketAddressAddr(addr), responseFuture.getCause());
}
} return responseCommand;
} finally {
//正常响应完成时,将future释放(正常逻辑)
//超时时,将future释放。这个请求已经作废了,后面如果再收到响应,就可以直接丢弃了(由于找不到相关的响应钩子,就不处理了)
this.responseTable.remove(opaque);
}
}

好,我们再来看看收到报文的时候是怎么处理的。我们都了解JDK中的Future的原理,大概就是将这个任务提交给其他线程处理,该线程处理完毕后会将结果写入到Future对象中,写入时如果有线程在等待该结果,则唤醒这些线程。这里也差不多,只不过执行线程在服务端,服务执行完毕后会将结果通过长连接发送给客户端,客户端收到后根据报文中的ID信息从待响应池中找到Future对象,然后就是类似的处理了。

class NettyClientHandler extends SimpleChannelInboundHandler<RemotingCommand> {

    //底层解码完毕得到RemotingCommand的报文
@Override
protected void channelRead0(ChannelHandlerContext ctx, RemotingCommand msg) throws Exception {
processMessageReceived(ctx, msg);
}
} public void processMessageReceived(ChannelHandlerContext ctx, RemotingCommand msg) throws Exception {
final RemotingCommand cmd = msg;
if (cmd != null) {
//判断类型
switch (cmd.getType()) {
case REQUEST_COMMAND:
processRequestCommand(ctx, cmd);
break;
case RESPONSE_COMMAND:
processResponseCommand(ctx, cmd);
break;
default:
break;
}
}
} public void processResponseCommand(ChannelHandlerContext ctx, RemotingCommand cmd) {
//取得消息id
final int opaque = cmd.getOpaque();
//从待响应池中取得对应请求
final ResponseFuture responseFuture = responseTable.get(opaque);
if (responseFuture != null) {
//将响应值注入到ResponseFuture对象中,等待线程可从这个对象获取结果
responseFuture.setResponseCommand(cmd);
//请求已处理完毕,释放该请求
responseTable.remove(opaque); //如果有回调函数的话则回调(由当前线程处理)
if (responseFuture.getInvokeCallback() != null) {
executeInvokeCallback(responseFuture);
} else {
//没有的话,则唤醒等待线程(由等待线程做处理)
responseFuture.putResponse(cmd);
responseFuture.release();
}
} else {
log.warn("receive response, but not matched any request, " + RemotingHelper.parseChannelRemoteAddr(ctx.channel()));
log.warn(cmd.toString());
}
}

总结一下,客户端的处理时序大概是这样的:

结构大概是这样的:

3.服务端的处理

//todo 服务端待补充CommitLog文件映射相关内容

class NettyServerHandler extends SimpleChannelInboundHandler<RemotingCommand> {

    @Override
protected void channelRead0(ChannelHandlerContext ctx, RemotingCommand msg) throws Exception {
processMessageReceived(ctx, msg);
}
} //from NettyRemotingAbscract.java
public void processMessageReceived(ChannelHandlerContext ctx, RemotingCommand msg) throws Exception {
final RemotingCommand cmd = msg;
if (cmd != null) {
switch (cmd.getType()) {
case REQUEST_COMMAND: //服务端走这里
processRequestCommand(ctx, cmd);
break;
case RESPONSE_COMMAND:
processResponseCommand(ctx, cmd);
break;
default:
break;
}
}
} //from NettyRemotingAbscract.java
public void processRequestCommand(final ChannelHandlerContext ctx, final RemotingCommand cmd) {
//查看有无该请求code相关的处理器
final Pair<NettyRequestProcessor, ExecutorService> matched = this.processorTable.get(cmd.getCode());
//如果没有,则使用默认处理器(可能没有默认处理器)
final Pair<NettyRequestProcessor, ExecutorService> pair = null == matched ? this.defaultRequestProcessor : matched;
final int opaque = cmd.getOpaque(); if (pair != null) {
Runnable run = new Runnable() {
@Override
public void run() {
try {
doBeforeRpcHooks(RemotingHelper.parseChannelRemoteAddr(ctx.channel()), cmd);
final RemotingResponseCallback callback = new RemotingResponseCallback() {
@Override
public void callback(RemotingCommand response) {
doAfterRpcHooks(RemotingHelper.parseChannelRemoteAddr(ctx.channel()), cmd, response);
if (!cmd.isOnewayRPC()) {
if (response != null) { //不为null,则由本类将响应值写会给请求方
response.setOpaque(opaque);
response.markResponseType();
try {
ctx.writeAndFlush(response);
} catch (Throwable e) {
log.error("process request over, but response failed", e);
log.error(cmd.toString());
log.error(response.toString());
}
} else { //为null,意味着processor内部已经将响应处理了,这里无需再处理。
}
}
}
};
if (pair.getObject1() instanceof AsyncNettyRequestProcessor) {//QueryMessageProcessor为异步处理器
AsyncNettyRequestProcessor processor = (AsyncNettyRequestProcessor)pair.getObject1();
processor.asyncProcessRequest(ctx, cmd, callback);
} else {
NettyRequestProcessor processor = pair.getObject1();
RemotingCommand response = processor.processRequest(ctx, cmd);
doAfterRpcHooks(RemotingHelper.parseChannelRemoteAddr(ctx.channel()), cmd, response);
callback.callback(response);
}
} catch (Throwable e) {
log.error("process request exception", e);
log.error(cmd.toString()); if (!cmd.isOnewayRPC()) {
final RemotingCommand response = RemotingCommand.createResponseCommand(RemotingSysResponseCode.SYSTEM_ERROR,
RemotingHelper.exceptionSimpleDesc(e));
response.setOpaque(opaque);
ctx.writeAndFlush(response);
}
}
}
}; if (pair.getObject1().rejectRequest()) {
final RemotingCommand response = RemotingCommand.createResponseCommand(RemotingSysResponseCode.SYSTEM_BUSY,
"[REJECTREQUEST]system busy, start flow control for a while");
response.setOpaque(opaque);
ctx.writeAndFlush(response);
return;
} try {
final RequestTask requestTask = new RequestTask(run, ctx.channel(), cmd);
pair.getObject2().submit(requestTask);
} catch (RejectedExecutionException e) {
if ((System.currentTimeMillis() % 10000) == 0) {
log.warn(RemotingHelper.parseChannelRemoteAddr(ctx.channel())
+ ", too many requests and system thread pool busy, RejectedExecutionException "
+ pair.getObject2().toString()
+ " request code: " + cmd.getCode());
} if (!cmd.isOnewayRPC()) {
final RemotingCommand response = RemotingCommand.createResponseCommand(RemotingSysResponseCode.SYSTEM_BUSY,
"[OVERLOAD]system busy, start flow control for a while");
response.setOpaque(opaque);
ctx.writeAndFlush(response);
}
}
} else {
String error = " request type " + cmd.getCode() + " not supported";
final RemotingCommand response =
RemotingCommand.createResponseCommand(RemotingSysResponseCode.REQUEST_CODE_NOT_SUPPORTED, error);
response.setOpaque(opaque);
ctx.writeAndFlush(response);
log.error(RemotingHelper.parseChannelRemoteAddr(ctx.channel()) + error);
}
} //from QueryMessageProcesor.java
@Override
public RemotingCommand processRequest(ChannelHandlerContext ctx, RemotingCommand request)
throws RemotingCommandException {
switch (request.getCode()) {
case RequestCode.QUERY_MESSAGE:
return this.queryMessage(ctx, request);
case RequestCode.VIEW_MESSAGE_BY_ID: //通过msgId查询消息
return this.viewMessageById(ctx, request);
default:
break;
} return null;
} public RemotingCommand viewMessageById(ChannelHandlerContext ctx, RemotingCommand request)
throws RemotingCommandException {
final RemotingCommand response = RemotingCommand.createResponseCommand(null);
final ViewMessageRequestHeader requestHeader =
(ViewMessageRequestHeader) request.decodeCommandCustomHeader(ViewMessageRequestHeader.class); response.setOpaque(request.getOpaque()); //getMessagetStore得到当前映射到内存中的CommitLog文件,然后根据偏移量取得数据
final SelectMappedBufferResult selectMappedBufferResult =
this.brokerController.getMessageStore().selectOneMessageByOffset(requestHeader.getOffset());
if (selectMappedBufferResult != null) {
response.setCode(ResponseCode.SUCCESS);
response.setRemark(null); //将响应通过socket写回给客户端
try {
//response对象的数据作为header
//消息内容作为body
FileRegion fileRegion =
new OneMessageTransfer(response.encodeHeader(selectMappedBufferResult.getSize()),
selectMappedBufferResult);
ctx.channel().writeAndFlush(fileRegion).addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
selectMappedBufferResult.release();
if (!future.isSuccess()) {
log.error("Transfer one message from page cache failed, ", future.cause());
}
}
});
} catch (Throwable e) {
log.error("", e);
selectMappedBufferResult.release();
} return null; //如果有值,则直接写回给请求方。这里返回null是不需要由外层处理响应。
} else {
response.setCode(ResponseCode.SYSTEM_ERROR);
response.setRemark("can not find message by the offset, " + requestHeader.getOffset());
} return response;
}

最新文章

  1. 非对称加密算法——RSA
  2. div水平居中与垂直居中的方法【摘自美浩工作室官方博客 】
  3. python3.2 + PyQt4界面开发hello world
  4. IOS s数据存储之归档解档
  5. c语言中动态数组的建立
  6. 伪多项式时间算法Pseudo-polynomial Algorithms-----geeksforGeek 翻译
  7. IOS开发之不同版本适配问题2(#ifdef __IPHONE_7_0)(转载)
  8. Forth-83 多任务解析
  9. 记 Java 各版本新特性
  10. ansible的管理与剧本
  11. (转)C#制作一个消息拦截器
  12. faceswap使用手冊
  13. Linux下MySQL链接被防火墙阻止
  14. 16级第二周寒假作业H题
  15. Android logcat详细用法
  16. Coursera连接不上(视频无法播放),修改hosts文件
  17. for of 与 for in的区别2
  18. Java 虚拟机-垃圾收集算法
  19. ubuntu安装GraphicsMagick
  20. TCP/IP的3次握手和4次握手

热门文章

  1. 图文详解压力测试工具JMeter的安装与使用
  2. 计算滚动条的宽度--js
  3. Java NIO的理解和应用
  4. 干货分享丨玩转物联网IoTDA服务系列五-智能家居煤气检测联动
  5. LQB201803乘积尾零
  6. Python编程语言简介
  7. pandas_重采样多索引标准差协方差
  8. PHP array_values() 函数
  9. PHP xpath() 函数
  10. Linux常用命令之cp、mv、rm、cat、more、head、tail、ln命令讲解