摘要:从手写线程池开始,逐步的分析这些代码在Java的线程池中是如何实现的。

本文分享自华为云社区《手写线程池,对照学习ThreadPoolExecutor线程池实现原理!》,作者:小傅哥。

谢飞机,小记!,上次吃亏在线程上,这可能一次坑掉两次吗!

谢飞机:你问吧,我准备好了!!!

面试官:嗯,线程池状态是如何设计存储的?

谢飞机:这!下一个,下一个!

面试官:Worker 的实现类,为什么不使用 ReentrantLock 来实现呢,而是自己继承AQS?

谢飞机:我…!

面试官:那你简述下,execute 的执行过程吧!

谢飞机:再见!

一、线程池讲解

1. 先看个例子

ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(10, 10, 0L, TimeUnit.MILLISECONDS, new ArrayBlockingQueue<>(10));
threadPoolExecutor.execute(() -> {
System.out.println("Hi 线程池!");
});
threadPoolExecutor.shutdown(); // Executors.newFixedThreadPool(10);
// Executors.newCachedThreadPool();
// Executors.newScheduledThreadPool(10);
// Executors.newSingleThreadExecutor();

这是一段用于创建线程池的例子,相信你已经用了很多次了。

线程池的核心目的就是资源的利用,避免重复创建线程带来的资源消耗。因此引入一个池化技术的思想,避免重复创建、销毁带来的性能开销。

那么,接下来我们就通过实践的方式分析下这个池子的构造,看看它是如何处理线程的。

2. 手写一个线程池

2.1 实现流程

为了更好的理解和分析关于线程池的源码,我们先来按照线程池的思想,手写一个非常简单的线程池。

其实很多时候一段功能代码的核心主逻辑可能并没有多复杂,但为了让核心流程顺利运行,就需要额外添加很多分支的辅助流程。就像我常说的,为了保护手才把擦屁屁纸弄那么大!

关于图 21-1,这个手写线程池的实现也非常简单,只会体现出核心流程,包括:

  1. 有n个一直在运行的线程,相当于我们创建线程池时允许的线程池大小。
  2. 把线程提交给线程池运行。
  3. 如果运行线程池已满,则把线程放入队列中。
  4. 最后当有空闲时,则获取队列中线程进行运行。

2.2 实现代码

public class ThreadPoolTrader implements Executor {

    private final AtomicInteger ctl = new AtomicInteger(0);

    private volatile int corePoolSize;
private volatile int maximumPoolSize; private final BlockingQueue<Runnable> workQueue; public ThreadPoolTrader(int corePoolSize, int maximumPoolSize, BlockingQueue<Runnable> workQueue) {
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
} @Override
public void execute(Runnable command) {
int c = ctl.get();
if (c < corePoolSize) {
if (!addWorker(command)) {
reject();
}
return;
}
if (!workQueue.offer(command)) {
if (!addWorker(command)) {
reject();
}
}
} private boolean addWorker(Runnable firstTask) {
if (ctl.get() >= maximumPoolSize) return false; Worker worker = new Worker(firstTask);
worker.thread.start();
ctl.incrementAndGet();
return true;
} private final class Worker implements Runnable { final Thread thread;
Runnable firstTask; public Worker(Runnable firstTask) {
this.thread = new Thread(this);
this.firstTask = firstTask;
} @Override
public void run() {
Runnable task = firstTask;
try {
while (task != null || (task = getTask()) != null) {
task.run();
if (ctl.get() > maximumPoolSize) {
break;
}
task = null;
}
} finally {
ctl.decrementAndGet();
}
} private Runnable getTask() {
for (; ; ) {
try {
System.out.println("workQueue.size:" + workQueue.size());
return workQueue.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
} private void reject() {
throw new RuntimeException("Error!ctl.count:" + ctl.get() + " workQueue.size:" + workQueue.size());
} public static void main(String[] args) {
ThreadPoolTrader threadPoolTrader = new ThreadPoolTrader(2, 2, new ArrayBlockingQueue<Runnable>(10)); for (int i = 0; i < 10; i++) {
int finalI = i;
threadPoolTrader.execute(() -> {
try {
Thread.sleep(1500);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("任务编号:" + finalI);
});
}
} } // 测试结果 任务编号:1
任务编号:0
workQueue.size:8
workQueue.size:8
任务编号:3
workQueue.size:6
任务编号:2
workQueue.size:5
任务编号:5
workQueue.size:4
任务编号:4
workQueue.size:3
任务编号:7
workQueue.size:2
任务编号:6
workQueue.size:1
任务编号:8
任务编号:9
workQueue.size:0
workQueue.size:0

以上,关于线程池的实现还是非常简单的,从测试结果上已经可以把最核心的池化思想体现出来了。主要功能逻辑包括:

  • ctl,用于记录线程池中线程数量。
  • corePoolSize、maximumPoolSize,用于限制线程池容量。
  • workQueue,线程池队列,也就是那些还不能被及时运行的线程,会被装入到这个队列中。
  • execute,用于提交线程,这个是通用的接口方法。在这个方法里主要实现的就是,当前提交的线程是加入到worker、队列还是放弃。
  • addWorker,主要是类 Worker 的具体操作,创建并执行线程。这里还包括了 getTask() 方法,也就是从队列中不断的获取未被执行的线程。

好,那么以上呢,就是这个简单线程池实现的具体体现。但如果深思熟虑就会发现这里需要很多完善,比如:线程池状态呢,不可能一直奔跑呀!?、线程池的锁呢,不会有并发问题吗?、线程池拒绝后的策略呢?,这些问题都没有在主流程解决,也正因为没有这些流程,所以上面的代码才更容易理解。

接下来,我们就开始分析线程池的源码,与我们实现的简单线程池参考对比,会更加容易理解 !

3. 线程池源码分析

3.1 线程池类关系图

以围绕核心类 ThreadPoolExecutor 的实现展开的类之间实现和继承关系,如图 21-2 线程池类关系图。

  • 接口 Executor、ExecutorService,定义线程池的基本方法。尤其是 execute(Runnable command) 提交线程池方法。
  • 抽象类 AbstractExecutorService,实现了基本通用的接口方法。
  • ThreadPoolExecutor,是整个线程池最核心的工具类方法,所有的其他类和接口,为围绕这个类来提供各自的功能。
  • Worker,是任务类,也就是最终执行的线程的方法。
  • RejectedExecutionHandler,是拒绝策略接口,有四个实现类;AbortPolicy(抛异常方式拒绝)、DiscardPolicy(直接丢弃)、DiscardOldestPolicy(丢弃存活时间最长的任务)、CallerRunsPolicy(谁提交谁执行)。
  • Executors,是用于创建我们常用的不同策略的线程池,newFixedThreadPool、newCachedThreadPool、newScheduledThreadPool、newSingleThreadExecutor。

3.2 高3位与低29位

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1; private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;

在 ThreadPoolExecutor 线程池实现类中,使用 AtomicInteger 类型的 ctl 记录线程池状态和线程池数量。在一个类型上记录多个值,它采用的分割数据区域,高3位记录状态,低29位存储线程数量,默认 RUNNING 状态,线程数为0个。

3.2 线程池状态

图 22-4 是线程池中的状态流转关系,包括如下状态:

  • RUNNING:运行状态,接受新的任务并且处理队列中的任务。
  • SHUTDOWN:关闭状态(调用了shutdown方法)。不接受新任务,,但是要处理队列中的任务。
  • STOP:停止状态(调用了shutdownNow方法)。不接受新任务,也不处理队列中的任务,并且要中断正在处理的任务。
  • TIDYING:所有的任务都已终止了,workerCount为0,线程池进入该状态后会调 terminated() 方法进入TERMINATED 状态。
  • TERMINATED:终止状态,terminated() 方法调用结束后的状态。

3.3 提交线程(execute)

public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}

在阅读这部分源码的时候,可以参考我们自己实现的线程池。其实最终的目的都是一样的,就是这段被提交的线程,启动执行、加入队列、决策策略,这三种方式。

  • ctl.get(),取的是记录线程状态和线程个数的值,最终需要使用方法 workerCountOf(),来获取当前线程数量。`workerCountOf 执行的是 c & CAPACITY 运算
  • 根据当前线程池中线程数量,与核心线程数 corePoolSize 做对比,小于则进行添加线程到任务执行队列。
  • 如果说此时线程数已满,那么则需要判断线程池是否为运行状态 isRunning(c)。如果是运行状态则把不能被执行的线程放入线程队列中。
  • 放入线程队列以后,还需要重新判断线程是否运行以及移除操作,如果非运行且移除,则进行拒绝策略。否则判断线程数量为0后添加新线程。
  • 最后就是再次尝试添加任务执行,此时方法 addWorker 的第二个入参是 false,最终会影响添加执行任务数量判断。如果添加失败则进行拒绝策略。

3.5 添加执行任务(addWorker)

private boolean addWorker(Runnable firstTask, boolean core)

第一部分、增加线程数量

retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}

第一部分、创建启动线程

boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;

添加执行任务的流程可以分为两块看,上面代码部分是用于记录线程数量、下面代码部分是在独占锁里创建执行线程并启动。这部分代码在不看锁、CAS等操作,那么就和我们最开始手写的线程池基本一样了

  • if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty())),判断当前线程池状态,是否为 SHUTDOWN、STOP、TIDYING、TERMINATED中的一个。并且当前状态为 SHUTDOWN、且传入的任务为 null,同时队列不为空。那么就返回 false。
  • compareAndIncrementWorkerCount,CAS 操作,增加线程数量,成功就会跳出标记的循环体。
  • runStateOf(c) != rs,最后是线程池状态判断,决定是否循环。
  • 在线程池数量记录成功后,则需要进入加锁环节,创建执行线程,并记录状态。在最后如果判断没有启动成功,则需要执行 addWorkerFailed 方法,剔除到线程方法等操作。

3.6 执行线程(runWorker)

final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // 允许中断
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null)
w.lock();
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}

其实,有了手写线程池的基础,到这也就基本了解了,线程池在干嘛。到这最核心的点就是 task.run() 让线程跑起来。额外再附带一些其他流程如下;

  • beforeExecute、afterExecute,线程执行的前后做一些统计信息。
  • 另外这里的锁操作是 Worker 继承 AQS 自己实现的不可重入的独占锁。
  • processWorkerExit,如果你感兴趣,类似这样的方法也可以深入了解下。在线程退出时候workers做到一些移除处理以及完成任务数等,也非常有意思

3.7 队列获取任务(getTask)

如果你已经开始阅读源码,可以在 runWorker 方法中,看到这样一句循环代码 while (task != null || (task = getTask()) != null)。这与我们手写线程池中操作的方式是一样的,核心目的就是从队列中获取线程方法。

private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
  • getTask 方法从阻塞队列中获取等待被执行的任务,也就是一条条往出拿线程方法。
  • if (rs >= SHUTDOWN ...,判断线程是否关闭。
  • wc = workerCountOf(c),wc > corePoolSize,如果工作线程数超过核心线程数量 corePoolSize 并且 workQueue 不为空,则增加工作线程。但如果超时未获取到线程,则会把大于 corePoolSize 的线程销毁掉。
  • timed,是 allowCoreThreadTimeOut 得来的。最终 timed 为 true 时,则通过阻塞队列的poll方法进行超时控制。
  • 如果在 keepAliveTime 时间内没有获取到任务,则返回null。如果为false,则阻塞。

二、总结

  • 这一章节并没有完全把线程池的所有知识点都介绍完,否则一篇内容会有些臃肿。在这一章节我们从手写线程池开始,逐步的分析这些代码在Java的线程池中是如何实现的,涉及到的知识点也几乎是我们以前介绍过的内容,包括:队列、CAS、AQS、重入锁、独占锁等内容。所以这些知识也基本是环环相扣的,最好有一些根基否则会有些不好理解。
  • 除了本章介绍的,我们还没有讲到线程的销毁过程、四种线程池方法的选择和使用、以及在CPU密集型任务、IO 密集型任务时该怎么配置。另外在Spring中也有自己实现的线程池方法。这些知识点都非常贴近实际操作。

点击关注,第一时间了解华为云新鲜技术~

最新文章

  1. [asp.net core]定义Tag Helpers
  2. 《ASP.NET MVC高级编程(4版)》读书笔记(5)表单和HTML辅助方法
  3. NSUserDefaults:熟悉与陌生(转)
  4. live555库中的testH264VideoStreamer实例
  5. 为Elasticsearch添加中文分词,对比分词器效果
  6. [Effective JavaScript笔记]第3条:当心隐式的强制转换
  7. IT项目量化管理:细化、量化与图形化 与 中国IT项目实施困惑
  8. 菜鸟的MySQL学习笔记(二)
  9. [R] Draw a wordcloud
  10. c# 字符串切割 split
  11. MongoDB服务安装
  12. rsync技术报告(翻译)
  13. HTTP请求定义不同Content-Type及在SpringMVC如何接收(必看!!!)
  14. 关于spring的源码的理解
  15. Android 蓝牙4.0 BLE (onServicesDiscovered 返回 status 是 129,133时)
  16. P4512 【模板】多项式除法
  17. NOIp 2018 提高组
  18. Struts2 S标签 数目字格式化成金额输出(保留两位小数)
  19. golang学习之slice基本操作
  20. SharePoint2007深入浅出——使用jQuery UI

热门文章

  1. Jedis 连接池的基本使用
  2. From Hero to Zero
  3. 合并区间(c++)
  4. python 字典 分别根据值或键进行排序的方法
  5. Linux安装Collabora Online让NextCloud支持Office在线编辑
  6. spring-Ioc(二)学习笔记
  7. nuxt服务端渲染
  8. 强化学习实战 | 自定义gym环境之显示字符串
  9. MySQL索引失效的常见场景
  10. 《剑指offer》面试题25. 合并两个排序的链表