使用wait和notify方法实现了线程间的通讯,都是Object 类的方法,java所有的对象都提供了这两个方法

1.wait和notify必须配合synchronized使用

2.wait方法释放锁,notify方法不释放锁

import java.util.ArrayList;
import java.util.List; public class ListAdd1 {
private volatile static List list = new ArrayList(); public void add(){
list.add("laoshi");
}
public int size(){
return list.size();
} public static void main(String[] args) { final ListAdd1 list1 = new ListAdd1(); Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
try {
for(int i = 0; i <10; i++){
list1.add();
System.out.println("当前线程:" + Thread.currentThread().getName() + "添加了一个元素..");
Thread.sleep(500);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "t1"); Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
while(true){
if(list1.size() == 5){
System.out.println("当前线程收到通知:" + Thread.currentThread().getName() + " list size = 5 线程停止..");
throw new RuntimeException();
}
}
}
}, "t2"); t1.start();
t2.start();
}
}

  

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
/**
* wait notfiy 方法,wait释放锁,notfiy不释放锁
*/
public class ListAdd2 {
private volatile static List list = new ArrayList(); public void add(){
list.add("laoshi");
}
public int size(){
return list.size();
} public static void main(String[] args) { final ListAdd2 list2 = new ListAdd2(); // 1 实例化出来一个 lock
// 当使用wait 和 notify 的时候 , 一定要配合着synchronized关键字去使用
final Object lock = new Object(); final CountDownLatch countDownLatch = new CountDownLatch(1); Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
try {
synchronized (lock) {
for(int i = 0; i <10; i++){
list2.add();
System.out.println("当前线程:" + Thread.currentThread().getName() + "添加了一个元素..");
Thread.sleep(500);
if(list2.size() == 5){
System.out.println("已经发出通知..");
countDownLatch.countDown();
lock.notify();
}
}
}
} catch (InterruptedException e) {
e.printStackTrace();
} }
}, "t1"); Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
synchronized (lock) {
if(list2.size() != 5){
try {
System.out.println("t2进入...");
lock.wait();
countDownLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("当前线程:" + Thread.currentThread().getName() + "收到通知线程停止..");
throw new RuntimeException();
}
}
}, "t2"); t2.start();
t1.start();
}
}

  

import java.util.LinkedList;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger; public class MyQueue {
//1 需要一个承装元素的集合
private LinkedList<Object> list=new LinkedList<Object>(); //2 需要一个计数器
private AtomicInteger count=new AtomicInteger(0); //3 需要制定上限和下限
private final int minSize=0;
private final int maxSize ; //4 构造方法
public MyQueue(int size){
this.maxSize = size;
}
//5 初始化一个对象 用于加锁
private final Object lock=new Object(); //put(anObject): 把anObject加到BlockingQueue里,如果BlockQueue没有空间,则调用此方法的线程被阻断,
// 直到BlockingQueue里面有空间再继续.
public void put(Object obj){
synchronized (lock){
while (count.get()==this.maxSize){
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//1 加入元素
list.add(obj);
//2.计数器累加
count.incrementAndGet();
//3 通知另外一个线程(唤醒)
lock.notify();
System.out.println("新加入的元素为:" + obj);
}
} //take: 取走BlockingQueue里排在首位的对象,若BlockingQueue为空,
// 阻断进入等待状态直到BlockingQueue有新的数据被加入.
public Object take(){
Object ret=null;
synchronized (lock){
while (count.get()==this.minSize){
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//1 做移除元素操作
ret=list.removeFirst();
//2 计数器递减
count.decrementAndGet();
//3 唤醒另外一个线程
lock.notify();
}
return ret;
}
public int getSize(){
return this.count.get();
} public static void main(String[] args) { final MyQueue mq = new MyQueue(5);
mq.put("a");
mq.put("b");
mq.put("c");
mq.put("d");
mq.put("e"); System.out.println("当前容器的长度:" + mq.getSize()); Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
mq.put("f");
mq.put("g");
}
},"t1"); t1.start(); Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
Object o1 = mq.take();
System.out.println("移除的元素为:" + o1);
Object o2 = mq.take();
System.out.println("移除的元素为:" + o2);
}
},"t2");
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
} t2.start();
}
}

  ThreadLocal:线程局部变量,是一种多线程间并发访问变量的解决方案,与synchronized枷锁的方式不同,ThreadLocal完全不提供锁,使用以空间换时间的手段,为每个线程提供变量的独立副本,以保证线程安全。

在高并发量或者竞争激烈的场景,使用ThreadLoacal可以一定程度少减少锁竞争。

public class ConnThreadLocal {
public static ThreadLocal<String> th=new ThreadLocal<String>();
public void setTh(String value){
th.set(value);
}
public void getTh(){
System.out.println(Thread.currentThread().getName() + ":" + this.th.get());
}
public static void main(String[] args) throws InterruptedException { final ConnThreadLocal ct = new ConnThreadLocal();
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
ct.setTh("张三");
ct.getTh();
}
}, "t1"); Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(1000);
ct.getTh();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "t2"); t1.start();
t2.start();
}
}

单例模式:最常见的饥饿模式(直接实力化对象),懒汉模式(在调用方法时进行实例化对象)

在多线程中考虑性能和线程安全问题使用

dubble check instance

static inner class

public class DubbleSingleton {
private static DubbleSingleton ds;
public static DubbleSingleton getDs(){
if(ds == null){
try {
//模拟初始化对象的准备时间...
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (DubbleSingleton.class) {
if(ds == null){
ds = new DubbleSingleton();
}
}
}
return ds;
}
public static void main(String[] args) {
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println(DubbleSingleton.getDs().hashCode());
}
},"t1");
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println(DubbleSingleton.getDs().hashCode());
}
},"t2");
Thread t3 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println(DubbleSingleton.getDs().hashCode());
}
},"t3"); t1.start();
t2.start();
t3.start();
}
}

  这种方法用的多

public class Singletion {

    private static class InnerSingletion {
private static Singletion single = new Singletion();
} public static Singletion getInstance(){
return InnerSingletion.single;
}
}

  

import java.util.concurrent.TimeUnit;

public class Demo3 {
private volatile int signal;
public synchronized void set(int value){
signal=1;
notifyAll(); //notifyAll叫醒所有的处于wait线程,争夺到时间片的线程只有一个
notify(); //notify方法会随机叫醒一个处于wait状态的线程
//notify 拿到锁
//this.signal=value;
}
public synchronized int get(){
System.out.println(Thread.currentThread().getName()+"方法执行了。。。");
if(signal!=1){
try {
wait(); //释放锁
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(Thread.currentThread().getName()+"方法执行完毕。。。");
return signal;
}
public static void main(String[] args) {
Demo3 demo=new Demo3();
Target t1=new Target(demo);
Target t2=new Target(demo);
new Thread(t2).start();
new Thread(t2).start();
new Thread(t2).start();
new Thread(t2).start(); try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(t1).start();
}
}

  

最新文章

  1. 如何在win7上安装ant-design
  2. sprintf函数
  3. Hibernate-二级缓存策略
  4. nyoj-----284坦克大战(带权值的图搜索)
  5. android 开源 + 一些素材网站
  6. Python爬虫——抓取糗百段子
  7. Linux下which、whereis、locate、find 区别
  8. c#事件委托
  9. 怎么利用composer创建laravel项目
  10. SSL协议相关证书文件
  11. python之os
  12. BZOJ2244 拦截导弹
  13. 1、list 的一些相关操作 2、增删改查 3、tuple 的操作 4、range
  14. InnoDB的锁机制浅析(三)—幻读
  15. 初学FPGA
  16. Android中实现定时器的3中方法
  17. openStack虚拟机error 错误状态基于差异镜像+基镜像做恢复
  18. 如何用python的装饰器定义一个像C++一样的强类型函数
  19. 国产FPGA市场分析 该如何破局
  20. csharp: string Encoding

热门文章

  1. Java基础教程--安卓入门教程(七)
  2. react用脚手架创建一个react单页面项目,react起手式
  3. element ui里面table分页,页数从0开始的怎么做?
  4. gulp&amp;sass安装配置
  5. Net core学习系列(一)——Net Core介绍
  6. 在python中使用elasticsearch 需要注意的一些问题
  7. uniapp - 如何申请阿里云存储
  8. Xamarin图表开发基础教程(11)OxyPlot框架支持的图表类型
  9. Windows EXE 依赖DLL查看
  10. QT中添加图片资源