\(\mathcal{Description}\)

  Link.

  在一个 \(\mathbb R^2\) 的 \((0,0)\) 处有一颗棋子,对于参数 \(a,b\),若它当前坐标为 \((x,y)\),则它下一步可以走到 \((x\pm a,y\pm b)\) 和 \((x\pm b,y\pm a)\)。令 \(p(s,t)\) 表示 \(a=s,b=t\) 时,棋子是否能走遍所有整点。求:

\[\sum_{i=1}^n\sum_{j=1}^np(a,b)
\]

  答案自然溢出。

  \(T\) 组数据,\(nT\le10^{11}\)。

\(\mathcal{Solution}\)

  首先来描述 \(p(s,t)\),运用“组合操作”的思想,一颗棋子能走到所有整点,当且仅当它能位移 \((\pm 1,0)\) 和 \((0,\pm 1)\)。结合样例想一下发现 \(p(s,t)=[2\not|(s+t)\land\gcd(s,t)=1]\)。于是问题等价于求 \(n\) 以内奇偶性不同且互素的数对个数。推式子:

\[\begin{aligned}
\sum_{i=1}^n\sum_{j=1}^n[2\not|(s+t)\land\gcd(s,t)=1]&=\sum_{i=1}^n\sum_{j=1}^n[\gcd(i,j)=1]-\sum_{i=1}^n\sum_{j=1}^n[2\not|i][2\not|j][\gcd(i,j)=1]\\
&=\sum_{d=1}^n\mu(d)\lfloor\frac{n}{d}\rfloor^2-\sum_{d=1}^n[2\not|d]\mu(d)\lceil\frac{n}{d}\rceil^2
\end{aligned}
\]

  所以问题在于求:

\[\sum_{i=1}^n[2|i]\mu(i)=-\sum_{i=1}^{\lfloor\frac{n}2\rfloor}\mu(i)+\sum_{i=1}^{\lfloor\frac{n}2\rfloor}[2|n]\mu(i)
\]

  利用 \(\mu\) 积性,\(2\) 与奇数互素可以化成后面的样子,前一项杜教筛,后一项递归到规模小一半的原问题,记忆化一下直接计算即可。

  复杂度 \(\mathcal O(n^{\frac{2}3})\)(?

\(\mathcal{Code}\)

  求奇偶 \(\mu\) 的函数写得有点丑,知道意思就行 owo。

/* Clearink */

#include <cstdio>
#include <tr1/unordered_map> typedef unsigned long long ULL; const int MAXN = 7e6;
ULL n;
int pn, pr[MAXN + 5], mu[MAXN + 5], mus[MAXN + 5], emus[MAXN + 5];
bool vis[MAXN + 5];
std::tr1::unordered_map<ULL, ULL> remmu, rememu; inline void sieve ( const int n ) {
mu[1] = mus[1]= 1;
for ( int i = 2; i <= n; ++ i ) {
if ( ! vis[i] ) pr[++ pn] = i, mu[i] = -1;
for ( int j = 1, t; j <= pn && ( t = i * pr[j] ) <= n; ++ j ) {
vis[t] = true;
if ( !( i % pr[j] ) ) break;
mu[t] = -mu[i];
}
mus[i] = mus[i - 1] + mu[i];
emus[i] = emus[i - 1] + !( i & 1 ) * mu[i];
}
} inline ULL calcMus ( const ULL n ) {
if ( n <= MAXN ) return mus[n];
if ( remmu.count ( n ) ) return remmu[n];
ULL ret = 1;
for ( ULL l = 2, r; l <= n; l = r + 1 ) {
r = n / ( n / l );
ret -= ULL ( r - l + 1 ) * calcMus ( n / l );
}
return remmu[n] = ret;
} inline ULL calcEvenMus ( const ULL n ) {
if ( n <= MAXN ) return emus[n];
if ( rememu.count ( n ) ) return rememu[n];
return rememu[n] = calcEvenMus ( n >> 1 ) - calcMus ( n >> 1 );
} inline ULL calcOddMus ( const ULL n ) {
return calcMus ( n ) - calcEvenMus ( n );
} int main () {
sieve ( MAXN );
int T;
for ( scanf ( "%d", &T ); T --; ) {
scanf ( "%llu", &n ); ULL ans = 0;
for ( ULL l = 1, r; l <= n; l = r + 1 ) {
r = n / ( n / l );
ans += ( calcMus ( r ) - calcMus ( l - 1 ) ) * ( n / l ) * ( n / l );
ans -= ( calcOddMus ( r ) - calcOddMus ( l - 1 ) )
* ( n / l + 1 >> 1 ) * ( n / l + 1 >> 1 );
}
printf ( "%llu\n", ans );
}
return 0;
}

最新文章

  1. ROC曲线与AUC值
  2. jsp前三章测试
  3. jquery validate ajax submit form
  4. iOS:OC Lib:MagicalRecord
  5. Asp.net MVC 利用自定义RouteHandler来防止图片盗链
  6. VS2010 AlwaysCreate
  7. java面试中的智力题
  8. ASP.NET MVC 4使用Bundle的打包压缩JS/CSS
  9. jquery easyui combobox
  10. 浅谈.NET中闭包
  11. mysql 存储过程事务
  12. 201521123019 《java程序设计》 第13周学习总结
  13. python 闯关之路一(语法基础)
  14. ●Splay的一些题
  15. 输入参数的默认值设定${3:-var_d}
  16. lua-01
  17. 关于一些没做出来的SBCF题
  18. mongo数据库的y2038问题
  19. 恶劣条件下的apache配置(Linux)
  20. bootstrap5

热门文章

  1. vue爬坑之路(webpack 配置篇)
  2. vue2.0多页面开发
  3. .NET对接极光消息推送
  4. 经典定长指令-修改EIP
  5. kali linux2020 虚拟机改root密码
  6. Linux增加用户
  7. android+opencv+opencl: cv::dft()的opencl版本的性能分析
  8. 分享一个学习cesiumjs的中文社区
  9. java有四种访问权限
  10. Mac中显示及隐藏文件和文件夹的方法