题意

传送门

题解

首先我们不竖着看奶牛而是横着看。从下往上把奶牛叫做处于第0,1,2...0,1,2...0,1,2...层。那么相当于第000层的不动,第111层的平移一格,第222层的平移222格,以此类推,第iii层平移iii格。假设每一层的最小正周期为xix_ixi​,则显然有xi∣ix_i|ixi​∣i且xi∣nx_i|nxi​∣n。因为第iii层动了iii步恰好复原,iii就一定是最小正周期的倍数;因为是nnn的环排列,所以最小正周期是nnn的因数。

那么就有xi∣gcd(i,n)x_i|gcd(i,n)xi​∣gcd(i,n),又因为iii与i−1i-1i−1互质,则gcd(i,n)gcd(i,n)gcd(i,n)与gcd(i−1,n)gcd(i-1,n)gcd(i−1,n)互质,所以xix_ixi​与xi−1x_{i-1}xi−1​互质。

又因为为了不让第iii层的奶牛悬空,有第iii层的位置移动后必有第i−1i-1i−1层的奶牛支撑,结合互质得到,在xix_{i}xi​存在的情况下,xi−1=1x_{i-1}=1xi−1​=1。

意思就是说除了最上面一层,下面其它层周期均为111,也就是全都占满了,每一层都是nnn头奶牛。那么这个序列最多只能出现两个值,iii和i−1i-1i−1。

我们枚举iii,最大周期是gcd(i,n)gcd(i,n)gcd(i,n),答案就是

1+∑i=1n−1(2gcd(i,n)−1)=(∑i=1n−12gcd(i,n))−(n−2)\large1+\sum_{i=1}^{n-1}\left(2^{gcd(i,n)}-1\right)=\left(\sum_{i=1}^{n-1}2^{gcd(i,n)}\right)-(n-2)1+i=1∑n−1​(2gcd(i,n)−1)=⎝⎛​i=1∑n−1​2gcd(i,n)⎠⎞​−(n−2)前面的111表示最高层是第000层,后面的表示在gcd(i,n)gcd(i,n)gcd(i,n)这一最大周期内每个值只有iii和i−1i-1i−1两种取法,所以是222的次幂,不是最大周期的情况也能包括在内。后面的111表示不能全是i−1i-1i−1,否则最高层就不是iii了。

暴力做是O(nlogn)O(nlogn)O(nlogn)的,要考虑优化。

将gcd(i,n)gcd(i,n)gcd(i,n)相等的一起处理,对于1≤x&lt;n1\le x&lt;n1≤x<n,gcd(i,n)=x(1≤i&lt;n)gcd(i,n)=x(1\le i&lt;n)gcd(i,n)=x(1≤i<n)的iii的数量为φ(n/i)φ(n/i)φ(n/i),显然。所以答案就是(∑x∣nn−12x⋅φ(n/x))−(n−2)\left(\sum_{x|n}^{n-1}2^x\cdot φ(n/x)\right)-(n-2)⎝⎛​x∣n∑n−1​2x⋅φ(n/x)⎠⎞​−(n−2)

那么搜索出所有的因数,搜索过程中可以算出φ(n/x)φ(n/x)φ(n/x),最后时间复杂度为O(n⋅logn)O(\sqrt n\cdot logn)O(n​⋅logn)。logloglog是快速幂。

CODE

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int mod = 1000000007;
LL p[20], k[20], ans, a[20][40], n;
//p[i]表示第i个质因数,k[i]表示p[i]的幂
//a[i][j] = p[i]^j int cnt;
inline LL qpow(LL a, LL b) {
LL re=1;
for(;b;b>>=1,a=a*a%mod)if(b&1)re=re*a%mod;
return re;
}
void dfs(int i, LL x, LL phi) {
if(i > cnt) {
if(x < n)
ans = (ans + 1ll * qpow(2, x) * phi % mod) % mod;
return;
}
for(int j = 0; j <= k[i]; ++j)
dfs(i+1, x*a[i][j], phi/a[i][j]/(j<k[i]?p[i]:1)*(j<k[i]?p[i]-1:1)); //计算phi(n/x)
}
int main () {
scanf("%lld", &n); LL N = n;
for(LL i = 2; i*i <= n; ++i)
if(n % i == 0) {
p[++cnt] = i;
a[cnt][0] = 1;
while(n % i == 0) {
n /= i, ++k[cnt];
a[cnt][k[cnt]] = a[cnt][k[cnt]-1] * i;
}
}
if(n > 1) p[++cnt] = n, k[cnt] = 1, a[cnt][0] = 1, a[cnt][1] = n;
n = N;
dfs(1, 1, n);
printf("%lld\n", ((ans - n + 2) % mod + mod) % mod); //记得加mod
}

事实上官方题解是这样子的 Here

最新文章

  1. CSharpGL(23)用ComputeShader实现一个简单的ParticleSimulator
  2. 关于隐藏input输入内容问题
  3. JAVA基础之两种核心机制
  4. Codeforces Round #367 (Div. 2) A B C 暴力 二分 dp(字符串的反转)
  5. Java之JUC系列:外部Tools
  6. C#中gridView常用属性和技巧介绍
  7. HTML+CSS学习笔记(2) - 认识标签(1)
  8. jq实现瀑布流效果
  9. Eclipse快捷键集结
  10. Codeforces #345 Div.1
  11. 菜单组件——axure线框图部件库介绍
  12. oracle琐碎笔记
  13. scrapy设置代理的方法
  14. User authentication in Django(用户认证)
  15. (贪心)nyoj448-寻找最大数
  16. 泛型-----键值对----映射 hashmap--entry中key value 链表
  17. 基于ABP模块组件与依赖注入组件的项目插件开发
  18. Apche Kafka 的生与死 – failover 机制详解
  19. cakephp文件结构
  20. Django之Rest Framework框架

热门文章

  1. linux下jar命令(运行jar包)
  2. EasyUI 对话框弹出文件输入框
  3. Java Socket 的工作机制
  4. 题解 luoguP3554 【[POI2013]LUK-Triumphal arch】
  5. C++基础--函数重载
  6. python学习-22 字符串格式化
  7. 02 servlet基础 生命周期 tomcat web.xml
  8. [jquery]ajax最最常用的七个属性
  9. VBA消息框(MsgBox)(五)
  10. cookie和session,sessionStorage、localStorage和cookie的区别