题目大意:略 洛谷传送门 鉴于洛谷最近总崩,附上良心LOJ链接

任何形容词也不够赞美这一道神题

$\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{M}[gcd(i,j)==1][gcd(j,K)==1]$

$\sum\limits_{j=1}^{M}[gcd(j,K)==1]\sum\limits_{i=1}^{N}[gcd(i,j)==1]$

我们先处理右边的式子$\sum\limits_{i=1}^{N}[gcd(i,j)==1]$:

$\sum\limits_{i=1}^{N}\sum\limits_{d|gcd(i,j)}\mu(d)\sum\limits_{j=1}^{M}[gcd(j,K)==1][d|j]$

$\sum\limits_{d=1}^{N}\mu(d)\left \lfloor \frac{N}{d} \right \rfloor \sum\limits_{j=1}^{M}[gcd(j,K)==1][d|j]$

$\sum\limits_{d=1}^{N}\mu(d)\left \lfloor \frac{N}{d} \right \rfloor \sum\limits_{j=1}^{\left \lfloor \frac{M}{d} \right \rfloor}[gcd(jd,K)==1]$

加下来就是比较关键的一个展开式子,[gcd(jd,K)==1]是[gcd(d,K)==1]&[gcd(j,K)==1]的充分必要条件:

$\sum\limits_{d=1}^{N}[gcd(d,K)==1]\mu(d)\left \lfloor \frac{N}{d} \right \rfloor \sum\limits_{j=1}^{\left \lfloor \frac{M}{d} \right \rfloor}[gcd(j,K)==1]$

84分算法:

令$f(n)=\sum\limits_{i=1}^{n}[gcd(i,K)==1]$

这是啥?

欧拉函数$\varphi$啊!别和我一样反演傻了连欧拉函数的定义都忘了

$f(n)=\left \lfloor \frac{n}{K} \right \rfloor \varphi(K) + \sum\limits_{i=1}^{n\;mod\;K}[gcd(i,K)==1]$

预处理出$\varphi(K)$和$\sum\limits_{i=1}^{n}[gcd(i,K)==1]$,那么$f(n)$就能在$O(1)$求得

可$\sum\limits_{i=1}^{n}[gcd(i,K)==1]\mu(d)$就不能用$\varphi$了,但经过计算,$g$数组能在大约$O(n*K的质因子个数)$的时间内处理出来,极限情况也只不超过$2.6 \cdot 10^{7}$

那么这个问题就在$O(n)$的时间内被解决了

蒟蒻的代码写得非常迷就不放了

100分算法:

这是一道神仙题

先放上原式:$\sum\limits_{d=1}^{N}[gcd(d,K)==1]\mu(d)\left \lfloor \frac{N}{d} \right \rfloor \sum\limits_{j=1}^{\left \lfloor \frac{M}{d} \right \rfloor}[gcd(j,K)==1]$

$\sum\limits_{j=1}^{\left \lfloor \frac{M}{d} \right \rfloor}[gcd(j,K)==1]$可以用$84$分算法里的方法预处理,每次$O(1)$得到

现在令$g(N,K)=\sum\limits_{i=1}^{N}[gcd(i,K)==1]\mu(i)$

$=\sum\limits_{i=1}^{N}\mu(i)*\sum\limits_{d|i}\mu(d)$

$=\sum\limits_{d|K}\mu(d) \sum\limits_{i=1}^{N} [d|i]\mu(i)$

$=\sum\limits_{d|K}\mu(d) \sum\limits_{i=1}^{\left \lfloor \frac{N}{d} \right \rfloor} \mu(id)$

关键的部分来了

如果两个数$gcd(x,y)==1$,说明它们没有公共因子,满足积性函数的性质,那么$\mu(xy)=\mu(x)\mu(y)$

反之它们存在公共因子,那么$\mu(xy)$一定等于$0$

利用这个性质

$=\sum\limits_{d|K}\mu(d)^{2} \sum\limits_{i=1}^{\left \lfloor \frac{N}{d} \right \rfloor} [gcd(i,d)==1]\mu(i)$

诶!右面这个东西$\sum\limits_{i=1}^{\left \lfloor \frac{N}{d} \right \rfloor} [gcd(i,d)==1]\mu(i)$,似乎就是$g(\left \lfloor \frac{N}{d} \right \rfloor,d)$啊!

递归求解即可

当$n==0$是,答案就是$0$

发现$K==1$时不能继续递归了否则会死循环,此时

$G(n,1)=\sum\limits_{i=1}^{n} [gcd(i,1)==1]\mu(i)=\sum\limits_{i=1}^{n} \mu(i)$

$n$可能很大,上杜教筛即可

 #include <map>
#include <cmath>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 20000010
#define M1 2000010
#define K1 2010
#define ll long long
#define dd double
#define cll const long long
#define it map<int,int>::iterator
using namespace std; int N,M,K,maxn;
int mu[N1],smu[N1],pr[M1],cnt,phik; bool use[N1];
int f[K1],ps[K1],son[K1],is[K1],pn,sn;
vector<int>ss[K1];
void Pre()
{
int i,j,x; mu[]=smu[]=;
for(i=;i<=maxn;i++)
{
if(!use[i]){ pr[++cnt]=i; mu[i]=-;}
for(j=;j<=cnt&&i*pr[j]<=maxn;j++)
{
use[i*pr[j]]=;
if(i%pr[j]){ mu[i*pr[j]]=-mu[i];}
else{ break; }
}
smu[i]=smu[i-]+mu[i];
}
for(son[++sn]=,x=K,phik=K,i=;i<=K;i++)
{
if(x%i==){ ps[++pn]=i; phik=phik/i*(i-); while(x%i==) x/=i; }
if(K%i==){ son[++sn]=i; }
}
for(j=;j<=pn;j++)
for(i=ps[j];i<=K;i+=ps[j]) is[i]=;
for(i=;i<=K;i++) f[i]=f[i-]+(is[i]?:);
for(i=;i<=sn;i++)
{
x=son[i];
for(j=;j<=x;j++)
if(x%j==&&mu[j]) ss[x].push_back(j);
}
}
map<int,int>mp;
ll Smu(int n)
{
if(n<=maxn) return smu[n];
it k=mp.find(n);
if(k!=mp.end()) return k->second;
int i,la;ll ans=;
for(i=;i<=n;i=la+)
{
la=n/(n/i);
ans-=1ll*Smu(n/i)*(la-i+);
}
mp[n]=ans;
return ans;
}
ll F(int x){return 1ll*(x/K)*phik+f[x%K];}
ll G(int n,int k)
{
if(!n) return ;
if(k==)
{
if(n<=maxn) return smu[n];
else return Smu(n);
}
int i,d;ll ans=;
for(i=;i<ss[k].size();i++)
{
d=ss[k][i];
ans+=1ll*G(n/d,d);
}
return ans;
} int main()
{
scanf("%d%d%d",&N,&M,&K);
int i,j,la; ll ans=; maxn=min(max(N,M),); Pre();
for(i=;i<=min(N,M);i=la+)
{
la=min(N/(N/i),M/(M/i));
ans+=1ll*(G(la,K)-G(i-,K))*(N/i)*F(M/i);
}
printf("%lld\n",ans);
return ;
}

最新文章

  1. 国内2大Git代码托管网站
  2. 模块加载----Webpack
  3. 控制台打印出event对象时,对象里面的currentTarget为null
  4. 网站注册(css)
  5. Nodejs实现代理服务器配置
  6. [置顶] 关于redhat系统yum源的配置1
  7. Leetcode 136 137 260 SingleNumber I II III
  8. Java学习6——基本数据类型及其转换
  9. hdu 1130 How Many Trees?(Catalan数)
  10. OpenCV——PS滤镜,渐变映射
  11. java自动化-数据驱动juint演示,上篇
  12. 通俗大白话来理解TCP协议的三次握手和四次断开
  13. 51nod算法马拉松B
  14. 机器学习进阶-人脸关键点检测 1.dlib.get_frontal_face_detector(构建人脸框位置检测器) 2.dlib.shape_predictor(绘制人脸关键点检测器) 3.cv2.convexHull(获得凸包位置信息)
  15. Iphone控件大全
  16. Linux--nginx域名绑定-url rewrite
  17. iOS使用TFHpple解析html
  18. C高级第四次作业
  19. Dreamweaver杀手!Illustrator终结者?Flash的末日?图形图像设计程序之网页版
  20. ios iOS手势识别的详细使用(拖动,缩放,旋转,点击,手势依赖,自定义手势)

热门文章

  1. ELK 聚合查询
  2. HDU 4515
  3. HDU 4530
  4. [Javascript Crocks] Safely Access Nested Object Properties with `propPath`
  5. Intent 使用方法全面总结
  6. 【cl】maven新建项目
  7. 【JEECG技术博文】Local storage &amp;amp; easyui extensions
  8. LeetCode96_Unique Binary Search Trees(求1到n这些节点能够组成多少种不同的二叉查找树) Java题解
  9. SQL SERVER的浮点数类型及与C#的对应关系
  10. ES Segment Memory——本质上就是segment中加到内存的FST数据,因此segment越多,该内存越大