linux的GPIO通过sysfs为用户提供服务,下面是linux kernel里的说明文档,学习一下。

GPIO Sysfs Interface for Userspace
================================== Platforms which use the "gpiolib" implementors framework may choose to
configure a sysfs user interface to GPIOs. This is different from the
debugfs interface, since it provides control over GPIO direction and
value instead of just showing a gpio state summary. Plus, it could be
present on production systems without debugging support. Given appropriate hardware documentation for the system, userspace could
know for example that GPIO #23 controls the write protect line used to
protect boot loader segments in flash memory. System upgrade procedures
may need to temporarily remove that protection, first importing a GPIO,
then changing its output state, then updating the code before re-enabling
the write protection. In normal use, GPIO #23 would never be touched,
and the kernel would have no need to know about it. Again depending on appropriate hardware documentation, on some systems
userspace GPIO can be used to determine system configuration data that
standard kernels won't know about. And for some tasks, simple userspace
GPIO drivers could be all that the system really needs. DO NOT ABUSE SYSFS TO CONTROL HARDWARE THAT HAS PROPER KERNEL DRIVERS.
PLEASE READ THE DOCUMENT NAMED "drivers-on-gpio.txt" IN THIS DOCUMENTATION
DIRECTORY TO AVOID REINVENTING KERNEL WHEELS IN USERSPACE. I MEAN IT.
REALLY. Paths in Sysfs
--------------
There are three kinds of entries in /sys/class/gpio: - Control interfaces used to get userspace control over GPIOs; - GPIOs themselves; and - GPIO controllers ("gpio_chip" instances). That's in addition to standard files including the "device" symlink. The control interfaces are write-only: /sys/class/gpio/ "export" ... Userspace may ask the kernel to export control of
a GPIO to userspace by writing its number to this file. Example: "echo 19 > export" will create a "gpio19" node
for GPIO #19, if that's not requested by kernel code. "unexport" ... Reverses the effect of exporting to userspace. Example: "echo 19 > unexport" will remove a "gpio19"
node exported using the "export" file. GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42)
and have the following read/write attributes: /sys/class/gpio/gpioN/    通过export刚刚创建的文件件 "direction" ... reads as either "in" or "out". This value may
normally be written. Writing as "out" defaults to
initializing the value as low. To ensure glitch free
operation, values "low" and "high" may be written to
configure the GPIO as an output with that initial value. Note that this attribute *will not exist* if the kernel
doesn't support changing the direction of a GPIO, or
it was exported by kernel code that didn't explicitly
allow userspace to reconfigure this GPIO's direction. "value" ... reads as either 0 (low) or 1 (high). If the GPIO
is configured as an output, this value may be written;
any nonzero value is treated as high. If the pin can be configured as interrupt-generating interrupt
and if it has been configured to generate interrupts (see the
description of "edge"), you can poll(2) on that file and
poll(2) will return whenever the interrupt was triggered. If
you use poll(2), set the events POLLPRI and POLLERR. If you
use select(2), set the file descriptor in exceptfds. After
poll(2) returns, either lseek(2) to the beginning of the sysfs
file and read the new value or close the file and re-open it
to read the value. "edge" ... reads as either "none", "rising", "falling", or
"both". Write these strings to select the signal edge(s)
that will make poll(2) on the "value" file return. This file exists only if the pin can be configured as an
interrupt generating input pin. "active_low" ... reads as either 0 (false) or 1 (true). Write
any nonzero value to invert the value attribute both
for reading and writing. Existing and subsequent
poll(2) support configuration via the edge attribute
for "rising" and "falling" edges will follow this
setting. GPIO controllers have paths like /sys/class/gpio/gpiochip42/ (for the
controller implementing GPIOs starting at #42) and have the following
read-only attributes: /sys/class/gpio/gpiochipN/ "base" ... same as N, the first GPIO managed by this chip "label" ... provided for diagnostics (not always unique) "ngpio" ... how many GPIOs this manages (N to N + ngpio - 1) Board documentation should in most cases cover what GPIOs are used for
what purposes. However, those numbers are not always stable; GPIOs on
a daughtercard might be different depending on the base board being used,
or other cards in the stack. In such cases, you may need to use the
gpiochip nodes (possibly in conjunction with schematics) to determine
the correct GPIO number to use for a given signal. Exporting from Kernel code
--------------------------
Kernel code can explicitly manage exports of GPIOs which have already been
requested using gpio_request(): /* export the GPIO to userspace */
int gpiod_export(struct gpio_desc *desc, bool direction_may_change); /* reverse gpio_export() */
void gpiod_unexport(struct gpio_desc *desc); /* create a sysfs link to an exported GPIO node */
int gpiod_export_link(struct device *dev, const char *name,
struct gpio_desc *desc); After a kernel driver requests a GPIO, it may only be made available in
the sysfs interface by gpiod_export(). The driver can control whether the
signal direction may change. This helps drivers prevent userspace code
from accidentally clobbering important system state. This explicit exporting can help with debugging (by making some kinds
of experiments easier), or can provide an always-there interface that's
suitable for documenting as part of a board support package. After the GPIO has been exported, gpiod_export_link() allows creating
symlinks from elsewhere in sysfs to the GPIO sysfs node. Drivers can
use this to provide the interface under their own device in sysfs with
a descriptive name.
GPIO20控制LED
zynq> pwd
/sys/class/gpio
zynq> echo > export
zynq> ls
export gpio20 gpiochip0 unexport
zynq> cd gpio20
zynq> ls
active_low device direction edge subsystem uevent value
zynq> echo out> direction
zynq> cat direction
out
zynq> echo > value     //  输出高电平
zynq> echo > value     //   输出低电平

最新文章

  1. 前端利器---Bootstrap
  2. C语言字符串操作总结大全(超详细)
  3. 循序渐进Python3(十)-- 4 -- paramiko
  4. ado.net 向sql中插入新数据的同时获取自增重的id值
  5. Reverse Words in a String
  6. Winsock 入门 Echo 示例
  7. [计算机图形学] 基于C#窗口的Bresenham直线扫描算法、种子填充法、扫描线填充法模拟软件设计(二)
  8. PHP输入流php://input [转]
  9. Asp.Net 之 服务器端控件与客户端控件的区别
  10. window下手动搭建 PHP+Nginx+Mysql(转)
  11. HDOJ(HDU) 2162 Add ‘em(求和)
  12. android studio 开发android app 真机调试
  13. Java的Log系统介绍和切换(转)
  14. Caused by: java.lang.ClassNotFoundException: org.objectweb.asm.ClassVisitor
  15. webpack 安装流程
  16. 在表单提交之前做校验-利用jQuery的submit方法
  17. 获取url参数值(可解码中文值)
  18. kubernets code-generator
  19. 2018年—2019年第二学期第四周C#学习个人总结
  20. pyCharm-激活码(2018)

热门文章

  1. 收藏 SpringBoot :thymeleaf 使用详解
  2. 30道python真实面试题(搜集到的,看看其实都是基础)
  3. Linux+.NetCore+Nginx
  4. PartTime_网址_内
  5. 075 Sort Colors 分类颜色
  6. Solr创建索引问题
  7. hadoop集群启动时DataNode节点启动失败
  8. Shell分割字符得到数组
  9. 算法导论课后习题解答 第一部分 练习1.1-1->1.1-5
  10. 渣渣菜鸡的 ElasticSearch 源码解析 —— 启动流程(下)